Reverse Engineering and Malware Analysis
Fundamentals

Installing a Windows 11 VM

We already did this during classes and during projects. For this reason i am just going to do
this on my own. This time we are installing W11 with a number of precautions:

https://www.youtube.com/watch?v=qWij-n4id9EI

Requirements:

e Guest addition.
e Shared folder.
e Base snapshot.

Windows specific requirements:

Disable windows update

Disable windows defender (required for malware analysis tools)
Disable hide extensions

Show hidden files and folders

Create snapshot

Disable OneDrive...:
https://www.groovypost.com/howto/disable-onedrive-on-windows-11/

We never took snapshots before... which is an ideal solution to revert to a previous state.
Simply click on the VM machine on the “Machine” tab and “create a snapshot”. Once you
have named the snapshot you can simply view it in the VBoxmanager, easy for reverting to a
previous state:

“ Details

kmh Mame
v [Snapshot 1_installation

& Current State (changed)
o
!

Installing Flare VM for malware analysis

This will install all the required tooling for malware analysing and reversing.

- mandiant/flare-vm - Follow the installation instructions.
A couple of restarts / logouts will be performed. Stay at your VM’s side.

https://www.youtube.com/watch?v=qWj-n4id9EI
https://www.groovypost.com/howto/disable-onedrive-on-windows-11/
https://github.com/mandiant/flare-vm

Files and formats

We need to understand the contents of a file. This is mostly done with hex editors. In this
course we will be using 010 Editor.

An example file hello.txt is created with the contents “hello world!”. In hex this is displayed as
following:

Startup

72 6C 64 21 | Hello world!

We can also perform this with a tool called Trid. This is file analyser specifically meant for
analysing what a file actually does, or is.

Installation is done manually by going to the official website. Command line tool is easiest to
set up: https://mark0.net/soft-trid-e.html

e Install the Win32 package: this is the base program, trid.exe.
e Install the TrIDDefs.TRD package: this is required for the tool to run.

Once installed we can analyse the files provided by the instructor.

D Sample-Lab-3-1-1 16/02/2021 11:29 File 72 KB
D Sample-Lab-3-1-2 16/02/2021 11:29 File 32 KB
D Sample-Lab-3-1-3 16/02/2021 11:29 File 410 KB
D Sample-Lab-3-1-4 16/02/2021 11:29 File 4 KB
D Sample-Lab-3-1-53 16/02/2021 11:29 File T2 KB
D Sample-Lab-3-1-6 16/02/2021 11:29 File 1 KB
D Sample-Lab-3-1-7 16/02/2021 11:29 File 1 KB
D Sample-Lab-3-1-8 16/02/2021 11:29 File 1KE
D Sample-Lab-3-1-9 16/02/2021 11:29 File 12 KB
D Sample-Lab-3-1-10 16/02/2021 11:29 File 33 KB

D Sample-Lab-3-1-11 16/02/2021 11:29 File S KB

https://mark0.net/soft-trid-e.html

C:\Tools\trid> .\trid.exe -:._ample Lab-3-1\Sample-Lab-3-1-1

File Identifier v2.24 - (C) 2883-16 By M.Pontello
ions found: 15648

=

ng data from file: Z:\Sample-Lab-3-1\Sample- Lab—:—l 1
) Win32 Executable MS Vis ual C
Executable (gener
Dynamic Link Libr _
65 ME executable (gen
.EXE) Win32 Executable (generic)

This is an example for the first file specified - and tells us this is a Win32 Executable MS
Visual c++ file.

Toolshtrid» .\trid.exe Z:\5ample-Lab-3-1\5ample-Lab-3-1-2

File Identifier v2.24 (C) 2083-16 By M.Pontello
Definitions found: 15648
Analyzing. ..

Collecting data from file: Z:° 3-1\Sample-Lab-3-1-2
7 IP compressed ; (
-: Prlanu~.Pace+u~ blfmap (640x808) (1088/1)

The second file is apparently a ZIP file. Again - the name of the file, nor the extension, tells
us this! The analyser does.
E:ETﬁulsitriﬂ} .Htrid.éxeh :\Sample- Lab-3-1\5 aﬁpie—LaE—ﬁ—i—E

File Identifier w2.24 - (C) 2083-16 By M.Pontello
DEFinltluﬂs found: 15648

Analyzing. ..

-

ing data from file: Z “ﬁample—Lab—E—iu_ample Lab-3-1-3
[.PNG) Portable MNetwork Graphics (16

The third file is clearly a .PNG file. Again - no extension or additional information is provided
by the base file itself. You need to analyse the binary part of this file.

Virtual memory and the portable executable (PE) file

In this lab we will further look into process creation of files and how the virtual memory
works.

Process creation

We will look firstly into process creation - how do programs create processes?

In order to analyse such processes we need to have a tool called Process Hacker.
Found here: https://processhacker.sourceforge.io/downloads.php

This program can analyse processes created by a certain program.

1% Process Hacker [MyMachine\LocalUser]
Hacker View Tools Users Help
% Refresh .2 Options | &8 Find handles or DLLs 2#* Systemn information | O&E X
Processes Services Network Disk
MName PID CPU |/Ototal .. Private b.. Username Description
7 Systemn Idle Process 0 9123 B0 kB NTAUTHORITY\SYSTEM
~ W] Systemn 4 020 40kE NTAUTHORITV\SYSTEM NT Kernel & System
SIMSE.EXE 420 1,06 ME NTAUTHORITYASYSTEM Windows Session Manager
Memory Compression 2032 172 kB NT AUTHORITY\SYSTEM
Interrupts 7.96 0 Interrupts and DPCs
Registry 104 587MB NTAUTHORITY\SYSTEM
CSIS5.EXE 612 1.78 MB NTAUTHORITYWSYSTEM Client Server Runtime Process
W 0] wininit.exe 684 1,38 ME NT AUTHORITY\SYSTEM Windows Start-Up Application
~ [0 services.exe 828 465MB NTAUTHORITYVSYSTEM Services and Controller app
e swchost.exe 968 916 MEB NTAUTHORITYSYSTEM Host Process for Windows Ser...
v Widgets.exe 2092 6,99 ME MyMaching\LocalUser
v & msedgewebvie... 7304 3452 MB MyMaching\Locallser Micresoft Edge WebView2
& msedgewe... 4148 1.97MB MyMachine\LocalUser Microsoft Edge WebView2
& msedgewe... 2034 2543 MEB MyMachine\LocalUser Microsoft Edge WebView2
& msedgewe... 1732 11,43 MB MyMaching\LocalUser Microsoft Edge WebView2
& msedgewe... 7276 743 MB MyMachine\LocalUser Microsoft Edge WebView2
& msedgewe... 5824 63,41 MB MyMaching\LocalUser Microsoft Edge WebView2
StartMenuExperie... 4576 2931 MB MyMachine\LocalUser Windows Start Experience Host
RuntimeBroker.exe 5208 633 MB MyMachine\LocalUser Runtime Broker
RuntimeBroker.exe 5284 147ME MyMachine\localUser Runtime Broker
dilhost.exe 5612 6,34 ME MyMachine\lLocalUser COM Surrogate
© [UsystemSettingsere 508 3586MB MyMachinellocallser Settings
ApplicationFrame... 1212 911 ME MyMachine\LocalUser Application Frame Host
UserQOOBEBroker.... 8108 1.73MB MyMachine\LocalUser User OOBE Broker
dilhost.exe 4736 1,73MB MyMaching\LocalUser COM Surrogate
RuntimeBroker.exe 1328 3534 MB MyMachine\LocalUser Runtime Broker
RuntimeBroker.exe 7044 761 MB MyMachine\LocalUser Runtime Broker

|

smartscreen.exe 6644 425MB MyMaching\LocalUser Windows Defender SmartScre...
ﬂ? WmiPreSE.exe 1764 1,96 MB NT AUTHORITY\SYSTEM WMI Provider Host
swchost.exe 568 6,92 MB N..AMETWORK SERVICE Host Process for Windows Ser...
swchost.exe 432 216 MB NTAUTHORITY\WSYSTEM Host Process for Windows Ser...

Here you will see the following:

e Name: the name of the process.
e PID: Process ID. A uniquely identifiable parameter (ID) for running processes.

And much more information. With the test files provided - we need to change the extension
to an application - something we can run. Hereby we change the extension to .exe.

Iil Sample-4-1.exe

https://processhacker.sourceforge.io/downloads.php

Now we simply inspect the process hacker and the process:

B 7A\Sample-Lab-\Sample-4-1.exe
ello, World!

] Sample-4-1.exe 8884 2489 724 kB MyMachine\Locallser
BN conhost.exe aa92 5% ME MyMachine\LocalUser

When right clicking, or using enter, we can open up even more details.

| —

(W] Sample-4-1.exe (8884) Properties = O *
Memaory Environment Handles GPU Disk and Metwork ~ Comment
General Statistics Performance Threads Token Modules

File
MfA
(UNVERIFIED)
Version: MfA
Image file name:
VWBoxSvrisharedFolderisample-Lab-4\Sample-4-1.exe y
Process
Command line: 7 \sample-Lab-4\Sample-4-1.exe” .

Current directory: Ci\Windows\systemn32Y,

Started: 3 minutes and 21 seconds ago (16:21:30 12/02/2023)
PEE address: 0x3eb000 (32-bit: 0x3ecDOn) Image type: 32-bit
Parent: explorer.exe (4358) 1
Mitigation polides: Maone Details

Protection: Mone Permissions Terminate

Console Window Host

Here we can see that explorer.exe is the parent process. This is correct - since we started

the application in the explorer tab, which is the File Explorer.

It is important to take a look at the command line feed since specific parameters can be
given. Malware can possibly have very specific processes and parameters included.

Before it is executed - it is just a file. This file needs to be loaded in the
memory and executed. Once this is done - it becomes a process.

The other test files cannot be run properly - possibly due to not having the correct

installations. The first file we analysed above was running correctly.

Virtual Memory

Systems have limited amounts of RAM and require it to run programs. Virtual Memory can
be used to circumvent the regular available RAM by applying a lot of VRAM to a program in
the background - more than your available RAM.

COMPUTER SYSTEM

CPU
\ RAM
N CHROME.EXE PROCESS

SN

INSTRUCTION 1
INSTRUCTION 2
INSTRUCTION 3

HARD DISK

CHROME.EXE INSTRUCTION 1

INSTRUCTION 2
PROGRAM ON DISK INSTRUCTION 3

—

It involves three main components:

CPU: operating system (OS) loads the program into RAM and creates a process. At
this point the CPU can read the instruction in the RAM and run the program.

RAM: your main RAM (Random Access Memory). Hard disk programs will be run
here firstly in order to run. VRAM creates a virtual illusion to the process that it has a
lot of RAM available to run.

Hard Disk: where your program is stored.

VRAM is allocated to a process and telling it “you have 4 GB of RAM” available! While in
reality you only have 1 GB of RAM. This process of VRAM allocation can be done for every
single process. How is this possible?

Virtual Memory Given to the Process By OS

w e moo R

PROCESS 1 GB

Actual RAM Available Actual RAM Available

1

GB
4 - PROCESS 2 GB
GB
4
PROCESS3 GB

PAGEL PHYSICAL MEMORY

PROCESS1 VIRTUAL MEMORY /
wn

FRAME1
PAGE2 PAGEL

PAGEL |:
RAMC PAGE2

PROCESS2 VIRTUAL MEMORY

s N

The reason for this being possible is relatively “simple”. The hard disk is used as virtual
memory. Hard disk + Physical memory = Virtual memory. The hard disk will create the virtual
memory - it will act as virtual RAM.

Each page is just a block of memory. Process1 takes 1 page in the physical memory, and
page?2 is also loaded there. Process2 also needs memory - and is allocated to the physical
memory. Page2 is, at this point, allocated to the hard disk as virtual RAM. Once process2 is
loaded correctly - Page2 (from Process1) will swap back to physical memory to resume
execution.

This is done so fast - a user will not notice this at all. We make use of the hard disk to create
an illusion of huge amounts of RAM availability - which in essence is virtual RAM!

Example time: we open the file from the previous task again in Process Hacker and view the
memory tab.

In the first block you can read the Base address.
In the second block you can read the Type: Mapped or Private.

You can even open up the components even further.

e Mapped: parts of the program need to be mapped in virtual memory

for use by the process. Processes can modify the contents of the file Stack (thread 7484)
in the hard disk by directly modifying the mapped contents in memory. Stack 32-hit (thread 7484)
It is mapped to the hard disk - reference. Stack 32-bit (thread 7454)

e Private: not shared with other processes. Mostly used by malwares.

Stack(s) is where the process is storing local variables.
Images are the DLL(s) (Dynamic Link Libraries) - modules of the program.
Private can be commit, reserved or free.

Private: Reserved
Private: Commit
Private: Commit

Commit: the page has a physical area in RAM allocated for you.
Reserved: it has not gotten physical memory reserved yet - just being reserved.
When this happens - it will change to Commit.

e Free: addressed in virtual memory - but has not been assigned or made available to
the process just yet.

In the column Protection you can see RW, R, WCX,...
(W) Write: contents in memory can be read and written to.
(RW) Read: contents in the memory can be read - but not write to this memory
location (or execute).

e (WCX) Execute: execute means that location contains code that can be executed.

Use: if you click on a memory block you will get a hex view

- the raw bytes in that certain location (one record in the [P =Rl S e f
last screenshot). 0x10000 contains all this information. Left 43, cqus.
you can view the bytes, right you can view the ASCI address Length Reault
annotation of the bytes. Ox9ea30 34 TSA:fProcUniques
Ox%ea7l 32 KER.: ffSMARTSCREE
Ox%ezel 32 uments\SampleLa
In order to further investigate these strings - you can use OxGeb10 2 le-4-Lexe
. . o OxSebfd 160 REWMicrosoft\WWindows NT\Currenty. ..
the Strings button. Here you can view the specific address | gxaeesn 58 Cr\Windows\Syswows#ntdl.di
allocation and the results from this address. Virtual Ox1e3cd 13 Helo, Werld!
. . . Ox19e5he 64 HC: \Wwindows'SYSTEM 32\apphelp.dil
memory prOVIdeS a lot of information for malware 0x 192690 142 \Registry Wachine\System\CurrentC. ..
H . 0x1%eb0s 24 kernel32.dll
detection. Here you can find IP addresses and more. e e
W] Sample-4-1.exe (6444) Properties
General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment
B Hide free regions
Base address Type Size Protect... Use Total wWs Private WS Shareable WS Shared WS
» 0x 10000 Mapped 68kE R C:\Windows\System32\C_1252.MLS 4kB 4kB 4kB
> 0x30000 Mapped 64kBE RW Heap (ID 2) 4kB 4kB 4kB
> 0x40000 Mapped 124kB R 112 kB 112 kB 112 kB
> 0x60000 Private 256 kB RW Stack (thread 5240) 16 kB 16 kB
> 0xa00oo Private 1.024kE RW Stack 32-bit (thread 5240) 12kB 12kB
> 0x1a0000 Mapped Bk R 3kB 3kB 3kB
» 0x 160000 Private 3kB RW 3kB 3kB
> 0% 1c0000 Mapped 68kE R Ci\Windows\System32\C_1252.MLS 4kE 4kE 4kB
> Ox 120000 Mapped 68kE R C\Windows\System32\C_437.NL5 4kB 4kB 4kB
> 0x 200000 Private 2043kE RW PEE 20kB 20kB
> 0x400000 Image 12kB WCX C:\Users\Freds'\Documents\Sample-... 12kB 4kB 3kB 3kB
> 0x410000 Mapped 12kE R Ci\Windows\System32Y_intl.nls 4kB 4kB 4kB
> 0x420000 Private 200kE RW 4kB 4kB
> 0x460000 Mapped 68kE R Ci\Windows\System32\C_437.NLS 4kB 4kB 4kB
> 0x430000 Mapped 12kB R C:\Windows\System32Y_int.nls 4kB 4kB 4kE
» 0x430000 Private 103kE RW 4kB 4kB
> Ox4b0000 Mapped 12kB R C:\Windows\System32Y_int.nls 12kB i2kB 12 kB
» 0x4c0000 Mapped 68kE R C:\Windows\System32\C_1252.MLS 3kB 3kB 3kB
> Ox4e0000 Mapped 68kE R C:\Windows\System32\C_437.ML5 4kB 4kB 4kB
» 0x500000 Mapped 4kB R 4kB 4kB 4kB
» 0x510000 Mapped 4kB R 4kB 4kB 4kB
> 0x520000 Mapped 4kE R 4kB 4kB 4kB

PE files

PE files are Windows Executable files. This can be easily found when analysing the files:

PS C:\Tools\trid> .\trid.exe C:\Users\Freds\Documents\Sample-Lab-u/Sample-i-1.exe

TriD/32 - File Identifier v2.24 - (C) 2003-16 By M.Pontello
Definitions found: 15648
Analyzing...

Collecting data from file: C:\Users\Freds\Documents\Sample-Lab-u/Sample-u-1.exe
89.8% (.EXE) TCC Win32 executable (188337/2u/9)

We can also use the tool CFF Explorer in order to analyse this program further:

w' CFF Explorer VI - [Sample-4-1.exe] = a

File Settings 7

@ @ Sample4-1.exe

Property Value
=] Fle: Sample-4-1.
- E e £xe File Name ChUsers\Freds\Documents\Sample-Lab-\5ample-4-1.exe
— L= Dos Header
(=] Nt Headers File Type Portable Executable 32
=] File Header .
3 Optional Header File Info Mo match found.
(=] Data Directories [x] File Size 1.50 KB (1336 bytes)
— [=] Section Headers [x] .
PES 1.50 KB (1536 b
— | Import Directory e ¢ ytes)
— '~‘}J,q¢ﬁ-m Converter Created Sunday 12 February 2023, 16.33.06
—) Dependency Walker Modified Tuesday 16 February 2021, 11.29.04
— %4, Hex Editor
— -.‘l’ Identifier Accessed Sunday 12 February 2023, 17.17.34
— % Import Adder MDS BA1916330C4DBTB4CST30FBDTAATFI64
— '-‘LQud-; Disassembler
y . - 7 7B
— “),,thulthr SHA-1 27BFBE0MTETOEASFEGDE3ID2509E0ER56A0E98564
— '*‘fg,Fhwm.l‘ce Editor
o "‘}_-,UPX Wkility Property Value
Empty Mo additional info available

On the left side you have a few collapsible headers.

e Dos header: this is the first header. The first “member” is e_magic. This displays
your first bytes - 0: 4D and 1:5A. Translated into MZ when looking at ASCI. The
header member itself places these bytes in reverse. Intel systems store the bytes in
reverse order due to a convention. Word means two bytes.

MZ + “This program cannot be run in DOS mode” + “PE” tell us clearly this is

a PE file.

A=cii

MZ o...0... vy
e @. ...
Sample-4-1.exe |
? |:| 1 o oen. . 11,0LIITh
Member Offset Size Value SC1l is progran. conno
JbeE o run . 1n. .
£_magic 00000000 Word 5A4D MZ .0 -51]:' 5 f—'.L ggdeit RO

e Optional Header: the process needs to be stored into memory. It needs to allocate
space into virtual memory - how does it know what location will be allocated to this

process? The Optional Header will tell us all of this information.

Sample-4-1.exe

Member Offset Size Value | Meaning |

Magic 00000098 Word 0108 PE32

MajerLinkerVersion 0000009A Byte 06

MinerLinkerVersion 00D0009E Byte 0o

SizeQfCode 0000009C Dword 00000000

SizeOfInitializedData 000DO0AD Dword 00000000

SizeOfUninitializedData 000000AL Dwaord 00000000

AddressOfEntryPoint 000D00AS Dword 00001040 text

BaseOfCode 000D0DALC Dword 00001000

BaseOfData 000000B0 Dword 00002000 ~ (x400000
ImageBase 000000B4 Dwaord 00400000 0400000

Image
Image: Commit

When we look at the ImageBase value this is exactly the same as mentioned in Process
Hacker. Both of them “link” together! But this might not always be the same. They are
relative virtual addresses (RVA). If you want to find the actual location of this value - take

the Base address + Value and that should be our entry point.

Now we will take a look into deconstructing another header to look into the above theoretical
explanation. We will look into the P header. This is also called the Nt header and optional

header. Remember: the Value is always the opposite of the binary.

Sample-4-1.exe

2§

Member Offset Size Walue
Rle: Sample-4-1_exe i
~ : Signature 00000030 Dword 00004550
=l Dos Header
(=l Mt Headers
gooooosn oo oo 4C 01 02 00 00 00 OO0 00 o0 00 oo o0 FER
nOonMmMmnan no on o Mo T no O N2 Nt nAd mneo no onmn o o nn nn
The File Header store all kinds of data inside an executable.
H Sample-4-1.exe
2R
Member Offset Size Value Meaning
1 [Fle: Sample 4-1.cxc Machine 00000024 Word 014C Intel 386
— =] Dos Header
=l Mt Headers MumberOfSections | 00000036 Word 0002
[=] File Header
TimeDate5t 00000038 b d QOOD0000
=l Optional Header (mersTestamp wer
= Data Directories [«] PointerToSymbolTa... | 0000008C Dwaord 00000000
— 3 Section Headers] NumberOfSymbols | 00000090 T 00000000
— |2 Import Directory
J— '-ﬁ_-,h:ldm Converter SizeOfOptionalHea... | 00000034 Word OOED
— ‘) Dependency Walker Characteristics 00000096 Word 030F Click here
— 9% Hex Editor

The section header will include a variety of executables and data. When we look into the
File Header again - we see a NumberOfSections member - which correlates to the section
headers.

Sample-4-1.exe

2§

Mame Virtual Size Virtual Address | Raw Size Raw Address Reloc Address | Linenumbers

™ File: Sample-4-1.exe
2] Dos Header

= Nt Headers Byte[8] Dword Dword Dword Dword Dword Dword

= File Header

= Optional Header

[l Data Directories [x]
[Z] Section Headers [x]

00000000
00000000

text 000000ED
000000D0

00001000
00002000

00000200
00000200

00000200
00000400

00000000

.data 00000000

e Text: contains text.
e Data: contains some form of data.

Do know this is NOT RELIABLE for malware. Sometimes this can be executable code.
You can clearly see the Virtual Address which is used for virtual memory. We need to sum up
the base address + the value in order to look for the correct actual address.

The Optional Header can be used by Windows to copy the file into virtual memory.

The Data Directories contain the size and RVEs of directories and tables. Some of them
are blank - which means there is nothing there - but some of them include data.

Sample-4-1.exe

2 &

Member Offset Size Yalue Section
il File: Sample-4-1.
ClFle oxe Export Directory RVA 0000OOFS Dword 00000000
— (2] Dos Header
E] Nt Headers Export Directory Size 0DD0DOFC Dword 00000000
= File Header i
I rt Directory RVA 00000100 Dword 00002020 .dat
2l Optional Header e wer o
(5] Data Directories [x] Import Directory Size 00000104 Dword 00000028
— (] Section Headers 1 - [e — N A —

When looking in the tool x32dbg, which is a debugger, we can see this magic come to life.
Here you clearly sum up the two values: base address + value of another member.

ﬁ- Sample-4-1.exe - PID: 7592 - Module: sample-4-1.exe - Thread: Main Thread

File WView Debug Tracing Plugins Favourites Options Help May & 202
S E 0 ¥ § ¥l g & # fx
&l cru | Log _H Motes ® PBreakpoints B Memory Map [}
[EZ=Ecx EpxEsT El 00201040 ENNEE Tpush <bp
AddressOfEntryPoint 000000AS Dword 00007040 ext
ImageBase 000000B4 Dword Q000000

The raw size and the virtual size are no the same:

Mame Virtual Size Virtual Address | Raw Size Raw Address
Byte[8] Dword Dword Dword Dword

text QO0000ED 00001000 Q0000200 Q0000200
.data Q0000000 Q0002000 Q0000200 Q000000

We can review this in Process Hacker:

* 0400000 Image 12kB WCX C:\Jsers\Freds\Documents\Sample-. ..
0400000 Image: Commit 4kE R C:\Jsers\Freds\Documents\Sample-. ..
0401000 Image: Commit 4kB RX C:\Jsers\Freds\Documents\Sample-. ..

0402000 Image: Commit 4kB RW C:WUsers\Freds\Documents\Sample-. ..

This is clearly our text value and our data value (take a look at the Virtual Address + Base

Value)!
We will look into the DLL section of this file and the Import Directory:

[Sample-4-1.exe (7544) Properties w' CFF Explorer VIII - [Sample-4-1.exe]

File Settings 7
General Statistics Performance Threads Token Modules Memory Enwvi g

In the above screenshot you can see the dll msvcrt.dll being started by the process, which

can be viewed on the left side via Process Hacker.

The other two files included in this lab are a separate .dll and .exe. The exe needs the dll to

function! Thus will use dll files directly:

[4] Sample-4-2.dIl

W] Sarnple-4-3.exe

When we look one step further in the CFF Explorer we can clearly see the dll being utilized:

g, H @ Sample-4-1.exe Sampl=-4-2.2x2
Mame Base address Size Description - N . Imports (
Sample-4-Le... 03400000 12 kB B [T File: Sample-4-1.exe
C_1252.NLS 010000 68 kB — (= Dos Header
C_1252.MNL5 (0x1c0000 68 kB (= Mt Headers szhnsi (nFunctions) [
C_1252.MNLS 0x4a0000 68 kB =) File Header
C_437.ML5 0120000 55 kB AE;J Optional Header msvert.dil 3 :
C_437.NLS Ox450000 a3 kB = Data Directories [x]
C_437.MLS Ox4c0000 68 kB — (2 Section Headers [x]
kernel32.dll 0x76300000 960 kB Windows NT BASE API Clien) — E} Import Directory
KernelBase.dl 0x77390000 2,41MEB Windows NT BASE API Clieny —— '~‘:._-,A¢ﬂ-m Converter
locale.nls 0x610000 324kB — '{i_-, Dependency Walker
|_intl.nls 0x410000 12 kB — % Hex Editor
I_intl.rls 0%440000 12k8 — 4, Identifier
I_intl.nls 0x%430000 12 kB — 4, Import Adder
msvert.dll 0x76100000 734kB Windows MT CRT DLL — 'A‘}_-, Quick Disassembler

w#' CFF Explorer VIII - [Sample-4-3.exe]

File Settings ¥

1§

Sample-4-3.exe

Medule Mame Imports OFTs 1
3 [T File: Sample-4-3 exe
— (=] Dos Header
(=] Mt Headers szAnsi (nFunctions) Dword [
j gﬁi::jd:;a o Sample-4-2.dll 1 DDOOF124 0
[2] Data Directories [x] KERMEL32.dII 1] DDODFD30 |
— (=] Section Headers [x]
— E}Impnrt Directony

This is the reason why we also take a look at the Import Directory. It clearly utilises certain
dll files from our system! When we take a look into Process Hacker we see the same
happening:

] Sample-4-3.exe (1544) Properties

General Statistcs Performance Threads Token Modules Memory Enviror
Mame Base address Size Description
Sample-4-3.e... Oocc10000 B0 kB
apphelp.dIl 0x 7 54b0000 660 kB Application Compatibility Clie...
C_1252.MLS 0x3d0000 63 kB
C_1252.MLS 0x930000 63 ki
C_1252.MLS Oxd&0000 63 ki
C_437.MLS 0xSa0000 63 ki
C_437.MLS Oxd 30000 63 kB
C_437.MLS Oxd230000 a3 kB
kernel32.dl OxFe300000 960 kB Windows NT BASE API Clien...
KernelBase. dll O0x 77330000 2,41ME Windows NT BASE API Clien...
locale.nls Oxe30000 g824kB
|_intl.nls 0xSc0000 12 kB
|_intl.nls Daeaf0o0 12 kB
|_intl.nls Oxd 50000 12 kB
ntdll. dll OxF7310000 1,68 ME NT Layer DLL
ntdll. dll w7701, 2,08 MB NT Layer DLL
Sample-4-2.dIl Ox 75490000 a5 kB

At the bottom - sample-4.2.dll is again being displayed by the sample-4-3.exe process.

This is how executables utilise .dll files.

Windows Internals

Malware abuses operating system functionalities. Malware analysts need to be aware of this!

Win32 APIs: Application Programming Interface - just DLLs provided by Windows
another name for Windows functions!
They can be found in the System32 directory. Found in C:\Windows\System32

_ . Eg. kernel32.dll
Kernel32.dll contains many functions used by
programmers and malware authors. Try open in CFF Explorer

In CFF Explorer we can review this dll:

w CFF Explorer VI - [kernel32.d11]

File Settings 7

-
Member Offset Size Value
B |%] File: kemel 32 dll —
: Characteristics 00090400 Dword Q0000000
— (=] Dos Header
[5] Mt Headers TimeDateStamp 00090404 Dword B9TT46CT
[Z] File Header . .
(3 Optional Header MajorVersion 00090408 Word 0000
[Z] Data Directories [«] MinorWersion 00090404 Word 0000
— (=] Section Headers [x]
N 0009D40C Dword 000A156E
— |23 Export Dirsctory ame war
— I5) Import Directory Base 00090410 Dword 00000001
— |5 Resaurce Directory NumberOfFunctions 0009D414 Dword 00000687
— 2 Exception Directory
l— [0 Relocation Directory MNumberOfMNames 00090418 Dword D00006ET
— (20 Debug Directory AddressOfFunctions 0003D41C Dwaord 0009D428
— '-ﬁ-,kkims Converter
— '{'j_—,Dependencdeker Ordinal Function RVA | Mame Ordinal | Name RVA Mame
—), Hex Editor
— &, Identifier
— "13& Import Adder (nFunctions) | Dword Word Dword szAnsi
— “l(luck Disassembler - -
Y ilder 00000001 00041593 0000 00041578 Acquire5SRWLockExclusive
“ad Rebui
— '“133 Resource Editor 00000002 0ODA15CY 0001 000A15B4 AcquireSRWLockShared
00000003 0D0187BO 0002 00DDA15ET ActivateActCix
00000004 00014620 0003 0DDAT5F6 ActivateActChdWorker
00000005 00020FAD 0004 000A160B ActivatePackageVirtualizationCont...
00000006 0D0SAZ220 0005 00D0A1630 AddAtomA
00000007 00004730 0006 0DDA1639 AddAtomW

Other .dII's provided by windows can be viewed at the right.

NtdlL.dll
Visual Studio SDK utilises the underneath .dll’s. Kernel32.dll
Msvert. dll Kernelbase.dll
Msvbvmé60.dll Gdi32.dll
Veruntimexx.dll (xx refers to version of the sdk) User32.dll
.Net Frameworks (C# and VB.net) Comctl32.dll
Advapi32.dll

Ws32_32.dll

When we take a closer look into win32 API docs:

Google for APl and MSDN
Try googling CreateFile MSDN
Not just for creating files

Can also read files

Depends on the Parameters passed to the function

CreateFile is not only just for creating files - it can also read files. It depends on the
parameters passed towards this API.

CreateFileA() accepts 7 parameters

HANDLE CreateFileA(

LPCSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndattributes,
HANDLE hTemplateFile

)i

The dwCreationDisposition parameter decides if it is for creating file or,

for reading a file

CreateFileA accepts ASCII version of the string
CreateFileW accepts Unicode

Many other APIs also come in two versions just like this

(-__:ngDLE CreateFileA(HANDLE Createfilew(
LPCSTR 1pFileName, -

. 1pFileName,
R A .
DHORD LR DWORD dwDesiredAccess,
DWORD dwShareMode, DWORD dwshareMode
Y_AT T i i L
LPSECURITY_ATTRIBUTES lpSecur;tyAFtrlbgt?s, LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition, - . . B
- DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes, OMORD dwFlagsAndAttributes
HANDLE hTemplateFile g :

)s HANDLE hTemplateFile
»
)5

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

Windows APls

Information provided on the next slide:

CreateFileA and CreateFileW are provided by kernel32.dll
Another version is NTCreateFile which is provided by ntdil.dll

It is much low-level because it is closer to the kernel

Both CreateFileA and CreateFileB calls NTCreateFile internally
Ntdll.dIl then uses system calls (SYSCALLS) to execute the task
SYSCALLS are kernel level functions

Kernel Level functions is the heart of the Operating System
User Level functions (APls) make use of Kernel Level functions

Extended version of an API:

Some APlIs has an extended version

Eg, VirtualAllocEx is the extended version of VirtualAlloc

They are used to allocate virtual memory

VirtualAlloc allocates virtual memory for the current running process
But VirtualAllocEx allocates virtual memory for other running processes
Malware frequently makes use of them

There are also Undocumented APls:

e NT APIs in ntdll.dll are not officially documented by Microsoft
e But hackers have reversed engineered it and put up unofficial docs
e Check out: http://undocumented.ntinternals.net/

NtCreateSection is an undocumented APl commonly used by malware for a

technique called Process Hollowing: a security exploit in which an attacker removes
code in an executable file and replaces it with malicious code. The process hollowing
attack is used by hackers to cause an otherwise legitimate process to execute malicious
code.

APIls performing file operations:

CreateFile
WriteFile
ReadFile
SetFilePointer
DeleteFile
CloseFile

APIs performing registry operations:

e RegCreateKey
e RegDeleteKey
e RegSetValue

http://undocumented.ntinternals.net/

APIs for virtual memory:

VirtualAlloc
VirtualProtect
NtCreateSection
WriteProcessMemory
NtMapViewOfSection

APIs for processes and threads:

CreateProcess
ExitProcess
CreateRemoteThread
CreateThread
GetThreadContext
SetThreadContext
TerminateProcess
CreateProcesslinternal\W

APIs for DLLs

e LoadLibrary
e GetProcAddress

APIs for Windows Services:

OpenSCManager
CreateService
OpenService
ChangeServiceConfig2W
StartService

APIs for Mutexes:

e CreateMutex
e OpenMutex

All these APIs will help in malware analysis and behaviour.

Behaviour identification with APls

e Usage of APIs per se is not necessarily malware
e You need to analyse:

1. Context

2. Parameters supplied to APIs

3. Sets of APIs used in sequence

Take the case of Process Hollowing...

Example 1: Process Hollowing:

It is a popular technique used by malware

It uses CreateProcess API to create a brand-new process in suspended mode
To do that, it sets dwCreationFlag = CREATE_SUSPENDED

Normal programs do not do that

BOOL CreateProcessA(
LPCSTR 1pApplicationName,
LPSTR 1pCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY ATTRIBUTES lpThreadAttributes,

BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID 1pEnvironment,
LPCSTR lpCurrentDirectory,
LPSTARTUPINFOA 1pStartupInfo,

LPPROCESS_INFORMATION lpProcessInformation

Example 2: WriteProcessMemory:

e |t writes into the memory of another process
e Debuggers use this — so by itself it is not malicious
e But if a process also uses VirtualAllocEx and CreateRemoteThread

then it is malware
So, the set of APIs used in sequence make it malicious

Using Handle to identify Sequences:

Handle is a reference to files, registry, memory and processes

Processes makes use of handles to perform operations on the object it refers
These handles are parameters passed to processes

Tracking these handles help us identify sequence of APIs for any process
These sequences help us confirm if a process is malware

take the case of CreateFile...

1) hFile1 = CreateFile("C:\test1.txt", GENERIC WRITE, 0, NULL,
CREATE_NEW, FILE ATTRIBUTE NORMAL, NULL);
2) hFile2 = CreateFile("C:\test2.txt", GENERIC_WRITE, 0, NULL,
CREATE_NEW, FILE_ATTRIBUTE_NORMAL, NULL);
3) WriteFile(hFile2, DataBuffer,
dwBytesToWrite, &dwBytesWritten, NULL);
4) WriteFile(hFilea, DataBuffer,
dwBytesToWrite, &dwBytesWritten, NULL);

Can you identify the sequences? Tip: Trace the handles

Sequences: hFile1 and hFile2 creates certain .txt files... it will save these in the handles. In
number 3 and number 4 both of these Handles are used by WriteFile. 1 -4 and 2 - 3 are the
same process, thus this is the logical sequence.

Intro to Static and Dynamic Analysis

Malware Analysis Process

. Obtain the '
malware

e Static Analysis: without executing the malware.
e Dynamic Analysis: executing the malware and THEN doing the analysis.

Static analysis

Static Analysis

(=N =
00— —

o
o

Hashing Embedded Strings PE Header

e Look for a hash: and look into, for example, VirusTotal, if someone else has done
analysis on this specific hash. You cannot “lie” on these files - as the internal
elements of the file will be the same.

Strings: encoded strings, crypto strings,...
PE Header: analyse the PE header - and look into what the file is exactly doing.

Tools:

e File type analysis: identify the file type. Which type of file is this?

o Tridnet
o ExePE Info
e Searching for embedded strings:
o Bintext
o Strings

e Search for encrypted strings: it can reverse the strings.
o Xorsearch

e Examine PE headers:
o CFF Explorer
o PE Studio

e Create a cryptographic hash: Hashmyfile

Dynamic analysis

Dynamic Analysis

-

Monitor Changes Behavior Monitoring

e Monitor changes: create a snapshot before writing the malware. Once we have a
snapshot - execute the malware - and let it run for a couple of minutes. Once it
performs changes to the OS. Once finished we take a second snapshot. From the
comparison we look into the changes made by the malware.

e Behaviour monitoring: study the running malware. Is it creating new processes?
Has it written new files, or deleted new files,...?

Tools:

e Take snapshots: take two snapshots and look into the changes.
o Regshot
e What is the persistence mechanism: try to survive reboot, for example, by creating
new registry entries. Or creating new copies of itself auto-starting when running other
programs.
o Autoruns
e Capture network connections / packets: is it trying to connect to the outside
world? Fakenet will intercept packets and send a fake reply. It will NOT allow the
malware to talk to the outside world.
o Fakenet
o Wireshark
e Process monitoring: analyse all APIs used by the malware. Saving the file in a .csv
file obtained from Procmon - we can create a graph in Procdot.
o Procmon
o Procdot

More Techniques

5 o* AE

.
.

4

. .
Ssesnnnne’e®

DI
DIl

Reverse Memory Automation
Engineering Analysis

Some types of malware resist analysis or reverse engineering. But every malware will have
to unpack into the memory. Thus memory analysis can be used to look into these types of
malware.

Focus Your Analysis

What network
traffic is
generated?

File system Registry
modifications? modifications?

How does the
malware
auto-start?

Does it launch any
other processes?

Additionally you need ProcDot and BinText.

https://www.procdot.com/webhelp/index.html?installation.htm
https://www.procdot.com/downloadprocdotbinaries.htm

Static analysis of malware sample 1

The first malware is a malicious PDF file.

i budget-report.exe 07/02/2012 00:53 Application

|=] README.txt 07/02/2018 00:53 Text Document

First we will scan the file with trid.exe to analyse the file. We can clearly see this is not a
PDF file but a Win32 Executable.

hZWsersh\Freds\Documentsi\malwarel\bud

(C) 2083-16 By M.Pontello

We will need pestudio to analyse the file further: https://www.winitor.com/download2
This tool will detect any malicious behaviour.

https://www.procdot.com/webhelp/index.html?installation.htm
https://www.procdot.com/downloadprocdotbinaries.htm
https://www.winitor.com/download2

pestudic 9.47 - Malware Initial Assessment - www.winitor.com - [chusers\freds\documents\malware 1\budget-report.exe]

file settings about
sHdxBE?
[ERA] c\users\freds\documents\malware \budget-rep property value
! indicators (vinustotal » score) mds D7CCECER7CERARIDEFDARIASSOTOTTTE
PY virustotal (54/70) shal C1BEECAFERACCOIFC09IACRIEDIIFAOFBRSETDOT
... > dos-header (64 bytes)
B8 dos-stub (64 bytes) sha56 15CC3CADTAECADBASECS3554COEAFOBFBCCTA0BEFODS2DBC32BF559E90FS3FEE
. first-bytes-hex 40 3A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 0O
- [file-header (time-stamp) first-bytes-text MZ i L@
.1+ optional-header (GUI) file-size 419328 bytes
- 24 directories (4) entropy 5405
. sections (virtualized) * imphash 61F3FDA4608555D C4CBIENE36FC58TT3
| libraries (flag) signature
| imports (flag) tooling
] entry-point 83EC1CCT 042402000000 FF 15 A4 F54800 E8 4B FD FF FF 8D 74 26 00 8D BC 27 00 00 00 00 A1
=0 tls-callback (3) file-version
=] description
- resources (19) file-type executable
-abec strings (4622) * cpu 22-bit
subsystem GUl
compiler-stamp Ned Oct 14 08:3

debugger-stamp
resources-stamp
import-stamp
exports-stamp

The indicators will tell us how severe this malware file is.

indicator (27)
virustotal » score
libraries » flag
libraries » flag
imports = flag

file = compiler » stamp
sections > virtualized
file = hash

file > size
tls-callback > count
file > subsystem
group = AP|

group = AP

detail

3470

Internet Extensions for Win32 Library

level

-

Windows Socket Library

54

Wed Oct 14 03:31:48 1993

network
compression

FIRE T VE R Y R P R R R U S e

Level 1 is the most severe - and they tell us this is definitely a malware file. The strings
section tells us what values the file is using (or rather abusing). The flags indicate this is

possibly a malicious process.

size (bytes) location

flag (116)

X

oM oK M oM K oM X X X X X X

label (282)

value (4622)
AdjustTokenPrivileges
BuildExplicithccessWithMNa
LockupPrivilegeValue
OpenProcessToken
SetEntriesinfel

SetkernelObjectSecurity
SetMamedSecuritylnfo

group (13) technique (17)

ConvertStringSecurityDesc
RegCreatekeyEx
RegDeleteValue
RegFlushKey

RegSetValueEx
GetCurrentProcessld

GetThreadContext

Later on in the list we notice socket values, and connection values which

definitely do not belong to a standard PDF file: htens

socket

ioctlsocket
CreateProcess

recy
CreateToolhelp325napshot

zendto
L} GetCurrentThread

inet_ntoa
GetCurrentThread|d .
Vodule3Firs: inet_addr
WMiodule32Firs .

UuidCreate

Moduled2Mext

OpenProcess
Process32First

UuidToString
RpcStringFree

Process32Mext
SetProcessAffinityaszk
SetThread Context

SuspendThread

We can clearly see at the left there are various malicious techniques such as Process
Discovery, or Process Injection.

Looking at the imports (flag) section we see a more clearer picture:

imparts (190) flag (34) first-thunk-criginal (INT) first-thunk (JAT)
AdjustTekenPrivileges
BuildExplicitAccessWithMam...
LockupPrivilegeValued
OpenProcessToken
SetEntriesinfAcld
SetKernelObjectSecurity
SetMamedSecuritylnfod
RegCreateKeyExA
RegDeleteValued
RegFlushKey

RegSetValueExA
GetCurrentProcessid

GetThreadContext
GetThreadPriority
InternetCloseHandle
InternetOpend
InternetQpenlrld

oM oM oM KM oM oM oH oX oM oH X oM oM K oM oX

The InternetOpen imports clearly indicate this file can download other malicious files.
VirtualProtect and DeleteFileA are specifically used by malware. It can delete itself (the
copy) and create copies elsewhere - and the VirtualProtect is used to change the permission
for memory. You want to unpack other code, and execute it.

VirtualProtect X
Getl astlnputinfo b

DeleteFiled X

The Process imports monitor your system for analysis tools. It will resist processes for
reverse engineering and malware analysis tools.

Process32First
Process32Mext
SetProcessAffinityMask
SetThread Context

® X o= o=

The libraries can give us a better indication on what is actually being imported.

library (2) duplicate (1) flag (2]
WININET.DLL x
W52_32.dll x
ADVAPI32.DLL

KERMEL32.dlII

msvert.dll

msvert.dll X

SHELL32.DLL

USER32.dlI

WS2_32 is used to connect to the internet (Win Sock library).
ADVAPI32 is used to create new registry keys / entries.
USER32 is used to create a specific user interface.

Now we need a hash. We can use this to investigate on the internet. A file may be able to
lie, but a hash never does.

54 (_I) 54 security vendors and 3 sandboxes flagged this file as malicious
70
Secdcad 55 TA0befdd52dbe3: 53fee 409,50 KB 2023-01-23 23:43:47 UTC
budget-report.exe Size 20 days ago

@

X Community Score v/

peexe self-delete runti dules detect-deb long-sl direc lock-access checks- it ove-2014-3931 cve-2016-2569 exploit

Clearly VirusTotal, a file analyser, identifies this file as malicious. Some files are too large
to upload - this is why we create a hash.

https://www.virustotal.com/qui/file/15cc3cad7aec406a9ec93554c9eafObfbcc740bef9d52dbc3
2bf559e90f53fee

| m Properties x>
.« Filename: budget-report.exe
MD5: d7ccbc987cbBad8defdab3ab9070777e
SHAT:
£ CRC3Z: 72890076
| SHA-256: 15cc3cad7aec406a9ecd35h4cIeaflbfbee7 40befad52dbe32bfh59e90f53fee
SHA-512: 9c112363e5949bc9023c22c2526fad2c78352432789ddff98924c5e99944d03532846951
B SHA-384: 25cedc913bf62a1737c1bbef1d677e1cee545f6adb4cIec34014186e7612a%fab057alchd
Full Path: CiAUsers\Freds\Documents\malware1\budget-report.exe
Modified Time: 07702{2018 00:53:21

Created Time: 13/02{2023 18:46:19

https://www.virustotal.com/gui/file/15cc3cad7aec406a9ec93554c9eaf0bfbcc740bef9d52dbc32bf559e90f53fee
https://www.virustotal.com/gui/file/15cc3cad7aec406a9ec93554c9eaf0bfbcc740bef9d52dbc32bf559e90f53fee

Dynamic analysis workflow

. Start procmon, then pause and clear

. Start Fakenet

. Start Regshot, then take 1st shot

. Once 1st shot completes, Resume procmon

. Run Malware for about 1 — 3 mins and study fakenet output

. After about 3 mins pause procmon

. Use Regshot, to take 2nd shot

. Once 2nd shot completes, click Compare->Compare and show output
. Study Regshot output

O© 00N O WN -

ProcMon is used to process the malware. FakeNet starts to monitor the internet traffic and
intercept any attempt by the malware to connect to the internet. It will provide a fake
response to the malware.

ProcMon is paused since it does not need to register the changes made by Regshot.
RegShot will create a new snapshot of the C drive - the root of the filesystem. Once this is
done - it will pause by itself. Now we resume ProcMon. RegShot will then take a second
shot to see the changes being made. This will be used to compare the changes made by
the malware. Now we compare them both and we can study the output.

In procmon apply these filters:
ProcessName is: malware-name
Operation is:

WriteFile
SetDispositionInformationFile
RegSetValue

ProcessCreate

TCP

UDP

O O O O O

The below registries are mostly abused to create persistence.

Registry Persistence

\Software\Microsoft\Windows\CurrentVersion\Run

\Software\Microsoft\Windows\CurrentVersion\RunOnce

HKLM
\Softwa re\Microsoft\W\ndows\(jurrentVersion\H&ﬁervices
HKU
HKCU \Software\Microsoft\Windows\CurrentVersion\RunServicesOnce

\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

] \Software\Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLLs

It is also important to understand the difference between 32-bit and 64-bit files. This will
make files backwards compatible.

'(lllll

kernel32.dll

Windows\System32

Dynamic analysis of malware-1

Change your settings to host-only network!! To make sure Worms cannot spread through
the internet.

First you need to start ProcMon and clear everything + stop monitoring:

rA
L d r@ @
‘ocess Name P . . . o
Deactivate the square icon, and click the trash bin icon.

Now we will launch FakeNet.

FH C\Tools\FakeNet-NG\fakenet1.4.11\fakenet.exe

Next up is opening RegShot for new snapshots. This might take a while. Do not click Shot
2 yet! Select the correct Scan dir (C:\ drive) and click 1st shot.

@l Regshot 1.9.1 x84 Uni.. — *

Compare logs save as:

. 1st shot
©rain T () HML document
2nd shot
B8 scan dir 1[;dir2;dir 3;...;dir nn]: Compare
C:
\ Clear all
Output path: Quit
C:\Users\Freds\AppData'iLc
About
Add comment into the log:
English w

Now we will start ProcMon again and we will execute the malware itself.

FakeNet is blocking requests but since i have deactivated my internet - it isn’t displaying
correctly. Now we will pause ProcMon and create our second shot.

SUCCESS Thread ID: 691 A

NAME NOT FOUND Desired Acces, e Regshot 1.9.1x64 Uni.. —
‘malware1%... NAME NOT FOLUND Desired Acces:
\malware1'... NAME NOT FOUND Desired Accesy Compare logs save as:

‘malware1'... NAME NOT FOUND Desired Acces! @ Plain T™XT () HTML document Ist shot
‘malware1%... NAME NOT FOUND Desired Acces) 2nd shat
‘malware 1%... NAME NOT FOUMND Desired Acces)
& &2nd shot ¥ Acces| @ scan dir 1[;dir 2;dir3;...;dir nn]: Compare
e Acces) o)
1D 744 Clear all
Datetime: 2023-02-13 18:35:50 1D 581
oo Computer: MYMACHINE Acces) Output path: Quit
Username: Localldser |
$ Keys: 468339 f‘:z::; C:\Jsers\Freds\AppData'Lc About
‘. ‘-fa_lues: 769132 B ces
\nl Eillgssl:3183095565?' o Add comment into the log:
") | Acces:
og Acces) English =
og Acces)
ID: 547
— S—— T

Now click Compare and Output.

Regshot 1.9.1 x64 Unicode (beta r321)

Comments:

Datetime: 2023-82-13 18:27:08, 2023-82-13 18:35:50
Computer: MYMACHINE, MYMACHINE

Username: LocallUser, LocalUser

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\ServiceInstances
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\ServiceInstances\916e646b-b829-4745-ade6-71bBb472888a
HKLM\SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Group Policy\Servicelnstances
HKLM\SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Group Policy\Servicelnstances\916e646b-b@29-4745-adeb-71b8b472868a

HKU\S-1-5-21-3466579206-28827980874-3588331407-1001\Software\Microsoft\Phone\ShellUI\WindowSizing\Microsoft.Windows .CloudExperienceHost_cwSnlh2txyewy | App
HKU\S-1-5-21-3466579206-2882798074-35883314087-1001\Software\Microsoft\Windows\CurrentVersion\WindowProperties\2360452

Here we can see it is creating keys - and doing a lot of things. One sign of compromise is
the files added and files deleted section.

Deleted files:

[:\U5er5\Fred5\DDcuhentﬁhmalwarélkbudget—repart.exe
2018-82-86 23:53:21, GxPee800208, 419328

Created files:

[:\Windcwz;‘\PreFetch‘-\BUDGET—REPDﬁT.E}{E—ﬂEE&SﬂFEE.pF
2823-82-13 18:32:85%, OxPge82828, 11133

Now we will take a look at ProcMon again and issue a filter and click on apply.

B Process Monitor Filter *x

Display entries matching these conditions:

Process Mame ~ s ~ | budget-report.exe V| then Include -
Reset Add Remove

Column Relation Value Action

[] qj Process N... is budgetreport exe Include

a @ Process N... is Procmon exe Exclude

Add all the filters from the previous chapter!

Column Relation Walue Action

] qj Process N... is budgetreport exe Include
a qj Operation is White: File Include
a qj Operation s SetPositionrformation File Include
] | Operation i RegSetValue Include
B8 & Operation s Process Create Include
] d Operation s TCP Include
] \.J Operation s LDP Include

Make sure in Options -> Columns Thread ID is selected.

Process Management

[User Mame B Proces:z ID
[] Session ID B Thread ID
[] Authentication ID [] Parent PID
[l Integrity [Virtualized

Now we will save a file. The first one is a standard PML file (default settings). The second
one is a CSV format. Make sure to select All events.

Now we will look into visualising the malware via the tool ProcDOT. Click on the first three
dots to select the file. Click on the second dots to launch the analyser.

File Edit Wiew Fitters Plugins ?

Monitoring Logs Render Configuration

(—\ Procmon: C\Users'\Freds\Documents‘malware1\Logfile CSV o | Launcher: D
= Refresh
(CERTat =

Windump [Oropaths [Jcompressed []dumb]

Analyzing procmon file ...
——

Once it is done you double click on the malware process - budget-report.exe. And click on
Refresh. Here we will be able to see artefacts or evidence of malware activity. This will
make up our indicators of compromise.

CoUsers|Freck!

xxxxx datLOG2

=
—— HKCU!Software! Microsoit!
I (AUTOSTART!)

| HKCU\SoftwareiMicrosoftiWindows|CurrentVersionlIntemet Ssitings\Zane

» C\Users\Freds\AppDsts\Roaming 12645430k 22]

We clearly see the original file - budget-report.exe completely renamed to a different file.
This is how it hides in your system. The AUTOSTART value will make sure the malware
file will automatically start when your system starts. Both of these files can be used to
identify where the malware is hiding.

HKCWSoftware\Microsoft\Window s\ CurrentVersion\R unQnoei™ 12643430
[AJTOSTARTY)

Now we analyse the network packet obtained from FakeNet. Simply close FakeNet and use
the .pcap file for network analysis. This can be done with WireShark or BRIM.

& Brim Log Detail = O x
File Edit CQuery View Window Help

Log details for pool: packets_20230213_192610.pcap J!
P s A d
app_proto dris I
alert » severity 2
alert » signature ET
alert » category
alert » action
alert » signature_id
alert » gid
alert » rev 4
alert » metadata » signature_severity [Major]
alert » metadata » former_category [INFO]
alert » metadata » attack_target [Client_Endpoint]
alert » metadata » deployment [Perimeter]
alert » metadata » affected_product [Any]
alert » metadata » created_at [2019 08_13]
alert » metadata » performance_impact &
alert » metadata » updated at [2020 09 17]
alert » metadata » malware_family &
alert » metadata » tag &
flow_id 390,964 466,210,954
pcap_cnt 349
tx_id 2 Count 22 -
is event_typs src_ip src_port dest_ip dest_port vlan prote app_prote alert » severity
2023-02-13T18:32:00.121 Lalert 192.168.56.101 62178 192.168.56.101 53] uopP dns 2

The above clearly tells us something is going wrong, and is causing an alert in BRIM.
Unfortunately the exact malware behaviour seen in the video vs on my system is not
identical. This could possibly be due to the fact i was not connected to the internet. As i
have a local machine running on my local network - i am not going to infect my network and
take that kind of risk.

While we can cleary see in ProcDOT - malicious behaviour IS in fact happening, the pcap
file did not monitor suspicious activity going outwards. Again - could be due to the fact
internet connection was not established, but still.

AT THIS STAGE it is important to return to a PREVIOUS stage /
shapshot!!

Analysis of malware sample 2

The second file is a special one. It seems to be a regular .exe file - but in fact is something
different:

sers\Fredsi\Documentsimalware-samplei\financials-xls.exe

2883-16 By M.Pontello

EXE)
EXE) Wi
(.ICL) Windows Icons Lib

This is a UPX file - thus it is compressed. We need to uncompress this file firstly to analyse
it.

upx —d —o newname.exe originalname.exe

On Windows UPX is not by default available - download a UPX package manager and use
the command appropriately:

Jupx.exe -d C:\Users\Freds\Documents\malware-sample\financials-xls.exe -0
C:\Users\Freds\Documents\malware-sample\malware.exe

Now we have an even more malicious file... which is actually an executable:

@ 3 financials-xls.exe 07/02/2018 O7:55 Application
BT malware.exe 07/02/2018 O7:55 Application
PS C:\Tools\trid> .\trid.exe C:\Users\Freds\Documents\malware-sample\malware.exe
TrID/32 - File Identifier v2.24 - (C) 2003-16 By M.Pontello
Definitions found: 15648

Analyzing...

Collecting data from file: C:\Users\Freds\Documents\malware-sample\malware.exe

.8% (.EXE) wWin32 Executable MS Visual C++ (generic) (31286/45/13)
.U% (.EXE) Win32 EXE Yoda's Crypter (26569/9/4)
.8% (.DLL) Win32 Dynamic Link Library (generic) (6578/25/2)
.1% (.EXE) Winlé NE executable (generic) (56038/12/1)
.u% (.EXE) Win32 Executable (generic) (4585/5/1)
PS C:\Tools\trid=>

Now open up PE Studio. We can clearly see the malicious behaviour already... in Russian:

indicator (23]

file > signature » flag
resources > language
sections > writable > anomaly
sections > self-modifying
strings > URL

libraries = flag

imports > flag

strings > size > suspicious
imports > anonymous
file » hash

detail

Installer VISE Custom

Russian

Windows Socket 32-Bit Library

18
1434 bytes

726A072434F 75182781 DA9FAFSSEC213R60DFOEFAAARITTDSDSSFADOIT]..,

hborary (/]
Ws0CK32.dll
KERMEL32.DLL
ADVAPIZ2.dII
COMCTLI2.dII
ole32.dll
SHELL32.dlI
USER32.dlI

imports (83)

GetDesktopWindow
RegDeletekey A
RegSetValusExh
RegDeleteValued
RegCreateKeyExA
17 (recvfrom

4 (connect

23 (socket

115 (WSAStartup
10 (inet addr

9 (htons,

20 (sendto
WriteFile
DeleteFiled

GetEnvironmentStringsW

duphcate (1)

GetEnvironmentStrings

TerminateProcess
WinExec

flag (18)

X oE X XM oM oM oM oH oM oM oM X X oM M X oM X

tlag (1)

X

fir

level

W PO PO ek ol ek ok ek mk

We can see this malware has, again, malicious libraries and imports. WriteFile is a clear
winner already - while also changing a lot of Registry keys. In the first image - Virustotal
already flags the file multiple times.

VirusTotal also flags the hash of the file as malicious. We can also use BinText.

@ 49 security vendors and no sandboxes flagged this file as malicious

726a072434e751b2781d4914185ec213b60df0ef6aa6377d5d55fad0171e7de9

invoice xlsx exe

peexe direct-cpu-clock-access

long-sleeps

runtime-modules

persistence

This file actually creates a fake website telling you your computer is infected. It is directly
linked to a website: download . bravesentry . com

00000000SEAD 000000407040 O <htrml>

00000000SEAT 000000407047 O <head>

00000000SEAE 000OOOMO7OAE O <title< Mitle

00000000SEEE 0000004070BE a <script lagnuagesjavascripty

00000000SEDE 0000004070DE o document oncontextmenu=new Function"return false"]
00000000SFOF — 00000040710F O </scripty

000000005F1S 000000407113 1} </head:

000000005F21 000000407121 0 <body bgcolor="#000000">

000000005F34 000000407134 O <table width=1007% height=100% border=0>

000000005FE2 000000407162 a <trs<td align=right walign=battarm>

000000005FES 000000407185 O <table border=0 bgcal 000000" cellpadding=305 <tr><td>
00000000SFEF 00000O4071BF O <font face="ms sang serif" color="HFFFFFF":

00000000SFER DO00004071ER 1} <bxYour computer is in Dangerl</bx <br'wWindows Security Center has detected spyware/adware infectionl <brx|t is strongly recommended to use special antispyware tools to prevent data loss.
0000000006 000000407246 1} <At < Atrs < Atables

0000000060BY 000000407289 O <ty <ty

0000000060C4 0000004072C4 O </table>

0000000060CD 0000004072C0 O </bady>

000000006405 000000407EDS O TS AN
00000000BE70 000000407870 O GET /download. php?advid=0000071 76u=%ubp=%u HTTR/1.0
00000000BE&E DO00004078AE 1} Haost: download.bravesentry. com

00000000EECT 0000004078CC 1} B3.60.175.181

00000000BEDC 0000004078DC a GET http: //download bravesentry.comddownload. php?&adyid=0000071 Flu=%ukp=%u HTTFA.0
000000006731 000000407331 a Host: download.bravesentry. com

000000006751 000000407951 a Pragra: no-cache

000000006763 000000407963 0 Cache-Contral no-cache

000000006780 000000407380 O ProxyServer

000000O0E7E8C 00000040738C O FrouyEnable

000000006798 000000407333 1} SoftwaretMicrasoftswWindows\Cunenttersiont ntermet S ettings
000000006704 000000407304 a Your computer i in D anger!

00000000B7F0 0000004073F0 a ‘Windows Security Center has detected spyware/adware infection!
000000006830 000000407430 a Click here to install the |atest pratection tools!

000000006864 000000407464 a C:hProgram FileshBraveS entiy\BraveS entry. exe

000000006894 000000407494 O % %5

AAAAAAAAERL R AARRRARTA A R s

You can use xorsearch which apparently i don’t have to analyse the file for encrypted
strings. This can be used to encrypt strings within your malicious file.

B chusers\freds\documents\malware-sampleimah

----- > file-header (Intel-336)
----- > optional-header (GUI)
..... = directories (2)

sections (self-modifying) *

libraries (flag)
imports (flag)

.....)
----- 3 resources (language)
----- abe strings (size) *

raw-address

raw-size (36320 bytes)
virtual-address
virtual-size (57886 bytes)

characteristics
value

writable
executable
shareable
self-modifying

virtualized

items
import
resource

entry-point

05A00 (23040 bytes)
0x 00001000
0x00005836 (22582 bytes)

(OxE0040020
x

x

0x00001800 (6144 bytes)
000007000
(000002078 (8312 bytes)

0 CO000040
x

property value value value
indicators (file » signature > flag) *
general
dos-header (64 b) name text .data .FSrC
..... 1] -
= dzz_jb ;’52 bﬁfss md5 C3397B3376EDTCFB2FS64F4... 1983DEAFGGBOBBCOFO4E06F... 25849421526A999F4A4CS4A. .
-
> rich-header (Visual Studic) e.ntrop?.r 6388 3437
file-ratio (98.21%) 4013 %

4732 %

One 00

Ox00006A00 (27136 bytes)
Or000DADDD

(000006970 (26992 bytes)

(040000040

The sections part tells you the .text value is writable, executable and self-modifying -

which is definitely not default behaviour.

For dynamic analysis we, once more, open FakeNet, RegShot and ProcMon.

After setting everything up again we will run the malware as administrator.

We were thinking it was a website... But it is actually a weird little popup. After a minute or
two we will create the 2nd shot and stop ProcMon analysis. Once this is done, we will
initialise the Compare function within RegShot.

&3 malware.exe o =

Your computer is in Danger!
| Windows Security Center has detected
= spyware/adware infection!
Click here to install the latest protection
tools!

In the comparison we can see one very specific detail: xpupdate.exe

HKU\S-1-5-21-3466579206-2882798074-3588331407-1001\Software\Microsoft\Windows\CurrentVersion\Run\Windows update loader: "C:‘\Windows\xpupdate.exe"

This is the persistence mechanism of this malware. When someone reboots or relogs it
will run this file.

The below two files are clearly indicators of compromise:

C:\Users\Freds\AppData\Roaming\Install.dat
C:\Windows\xpupdate.exe

While the tutorial is displaying a lot more output - i am just getting the Registry Key changes.

Time ... Process Name PID Operation Path Result Detail
21:15:... BEmalware exe 31592 E’RegSeWalue HKC UM Software \Microsoft\Windows*C... SUCCESS Type: REG_SZ, Length: 48, Data: C:\Windows «pupdate exe

We will start looking into ProcDOT for a visual representation of the malware.

_’ C\Windows'\xpupdate exe 7

} C\Users\Freds\AppData'Roaming\Install.dat j

FILE:c \users\freds\documents\malware-sample'malware exe

The malware is creating multiple files... but again it has two ways of persistence: both the
xpupdate.exe file, and the malware.exe file is directly injected into the registry.

—
/ Y HKCU\SoftwareMicrosoftWindows'CurrentVersion\Run\Windows update loader
4@ L4

(AUTOSTARTI)

\REGISTRYA\W 1d3e0595-2384-¢12e-e9f1-d429dararf03}\RootInventaryApplicationFile\malware.exe|53acc4b1b43c342e\LowerCaseLongPath

Xpupdate.exe will automatically trigger once the system is restarted or relogged. The
malware.exe creates a new REGISTRY key with its values.

Again, unfortunately, the network is not properly working.

Assembly language basics

For malware analysis of Native Exe.

Stack:

Heap:

LIFO (Last In First Out) Data Structure
Stores local variables, and return addresses for functions
Accessed through push, pop, call and ret
RAM memory layout:
o Starts at higher addresses and as more values are pushed, smaller
addresses are used

Globally stored memory

All functions can access it

Typically stored in the Data Section of a program
RtlAllocateHeap can be used to create a Heap

Malware use heap as storage area for anything it is going to use

Segment Registers are used to store data.

Registers | Purpose . i
9 i Segment Registers

EAX Accumulator (Anthmetic))
Stack Pointer
Base (Pointer to Data)

: : . Code Pointer
Counter (Shift/Rotate instructions + loops)

Data (Arithmetic and I/0) Data Pointer

Extra Data
Pointer

Source Index (Pointer to Source in stream operations)

Destination Index (Pointer to Destination in stream
operations)

Extra Data

Base Pointer (Pointer to Base of Stack) Pointer

Stack Pointer (Pointer to top of Stack) Extra Data

Pointer

Instruction Pointer (Address of next instruction to exec)

Accessing parts of a register:

EAX, EBX, ECX, EDX, ESI. EDI, EBP, ESP (32 bits)

AX, BX, CX, DX, SI, DI, BP, SP
(16 bits)

AH,BH, CH,DH | AL, BL, CL, DL

A Ox5678 (8 bits) (8 bits)
AH: AL:
0x56 0x78

dword = 4 bytes (32 bits), word = 2 bytes (16 bits), byte = 8 bits
AH: gives you higher bytes, AL: gives you lower bytes. AX gives the value of the d-word
(word).

Flags register
Register where each bit acts as a flag, containinga 1 ora 0.
Purpose

Carry Flag - Set when the result of an operation is too large for the
destination operand

Zero Flag - Set when the result of an operation is equal to zero

Sign Flag - Set if the result of an operation is negative

Trap Flag - Set if step by step debugging - only one instruction will be
executed at a time

Assembly language instructions

e Three main categories:
o Data transfer (mov)
o Control Flow (push, call, jmp ...)
o Arithmetic/Logic (xor, or, and, mul, add ...)

Example of data transfer instructions:

Instruction | Purpose Format

mov Move mov dest, src

MOVZX Move-Zero-Extended movzx dest, src

lea Load Effective Address lea dest, src

xchg Exchange (Swap) xchg dest, src

Example of Control Flow Instructions (function calls)

Instruction ' Purpose Format

call Execute function call function

push Push value to stack push value

pop Pop value off stack pop regqister

ret Return from function ret

Example of Control Flow Instructions (Jumps)

Instruction | Purpose Format

Unconditional Jump Jjmp address

jmp
je Jmp if Equal (ZF = 1) je address

Jmp if Not Zero (ZF = 0) jnz address

jnb Jmp if Not Below (CF= 0)

jnb address

Example

mov eax, [edx]

movzx eax, 0x123
lea edx, [ebp-0x40]

xchg eax, ebx

Example

call sub_3B18C0
push ecx

pop ebx

ret

Example
jmp [eax]

je loc_

jnz loc_3B162F

jnb [edXx]

Example of Arithmetic Instructions:

Instruction | Purpose Format

add Add src to dest add dest, src

sub Subtract src from dest sub dest, src

imul Multiply src by val and imul dest, src, val
store in dest

Increment register by 1 inc register

Example of Logic Instructions:
Instruction | Purpose Format

xor Performs Bitwise XOR xor dest, src

shl Shift dest left by src bits shl dest, src
and Performs Bitwise AND and dest, src

foly Rotate dest right by src bits | ror dest, src

Test and cmp instructions:

Instruction | Purpose Format

Example
add eax, 0x10
sub eax, ebx

imul ebx, eax, 5

iNC ecx

Example

Xor eax, eax (Zeroes)
Xor eax, ebx (xor's)

shl ebx, ecx
and edx, eax

ror ecx, edx

Example

test Performs a Bitwise AND on the | test arg1, arg2 test eax, edx

two operands

If result is 0, ZF is set

Often used with conditional
jumps, though less than cmp

Compares first operand with cmp arg1, arg2 | cmp eax, 0
second operand by subtraction

e EAXregister is used to hold the return value of a function call
e The return value could be an integer, eg 0 or 1 or -1 (FFFFFFFF), or, even an

address eg, 0x3FA593D3

Analysis of malware sample 3

File identification (Lokibot Trojan)

Unpacking and decompiling using Exe2Aut

Using Ghidra Disassembler/Decompiler

Using xdbg debugger to defeat anti-debugging

Using xdbg debugger set breakpoints on VirtualAlloc

Using xdbg debugger to set hardware breakpoints on memory
Using Process Hacker to dump memory

PS C:\Tools\trid> .\trid.exe C:\Users\Freds\Documents\malware-sample-3\sample.bin

TrID/32 - File Identifier v2.24 - (C) 2003-16 By M.Pontello
Definitions found: 15648
Analyzing...

Collecting data from file: C:\Users\Freds\Documents\malware-sample-3\sample.bin
85.7% (.CPL) Windows Control Panel Item (generic) (197083/11/60)

4.5% (.EXE) Win6l4 Executable (generic) (16523/12/4)

.8% (.DLL) Win32 Dynamic Link Library (generic) (6578/25/2)

.1% (.EXE) Winlé NE executable (generic) (5038/12/1)

.9% (.EXE) Win32 Executable (generic) (4585/5/1)

This is a special file... an AutolT file, which is apparently widely being used by malware
developers. Within AutolT there is a script that is being used by the interpreter.

rcdata Autolt rerc e 000C30BE

In order to recompile this file (since it is now an exe) towards an AutolT file again. It will bring
back the original format created in AutolT.

Once we do this with a specialised tool (Aut2Exe) we get a variety of files back. We have a
AUS file which is effectively the file executing shell code.

D sample.bin 10/03/2020 22:47 BIM File
D sample.bin.overlay 13/02/2023 22:04 OVERLAY File
D sample.pak 13/02/2023 22:04 PAK File
E| sample.raw 13/02/2023 22:04 FLAW File
D sarmpletok 26/02/2020 12:25 TOK File

T PO T A

-| sample_restore.au3 3/02/2023 22:04 A3 File

DIM $GPYBUOKYOFQWL=ISSTRING("fasepwdbentvwhbjbrixgamhsayimpzslhsej")
GLOBAL $O0ACKVMND="struct*"

GLOBAL $RICUTIKQVBU="bool"

DIM $BVRLGYGFK="ptr"

LOCAL $FCPHKFEG="netapi32.d11l"

DIM $QKPYEIMTHXETQWSZVBLY="gdi32.d11"

LOCAL $DHBORPPYRVBAAQABV="UrlComparel"

IF NOT ($GPYBUOKYOFQWL==8)THEN

LOCAL $POE=EXECUTE("execute™)

ELSE

$POE(SAYUDERGFV("@x536C6565708282474696D65202F208246C6F6F7829™))
ENDIF

DIM $CGAIYLSGIEBHAEUMQ=ISSTRING("zdjcvibuvxxxjh™)

e e L T I

Al of the code is rather gibberish - and this is meant to be like @ Ghidra: MALWARE
this. The AutolT program does this specifically to confuse anyone File Edit Project Tools Help
stumbling upon this malware. R R E R | £

We will be using Ghidra to debug this code. First create a new Tool Chest

project by clicking on File and following the steps described. Link ‘% # tt?
towards the malware folder.

Active Project: MALWARE

Ghidra will automatically create a new folder and files.

Now we include the sample.bin file into the malware

folder (drag it towards Ghidra). » This PC » Documents > malware-sample-3
o ~
@Import,-"C:,-"Users,-"Freds,-"Documents,-"maIwarE-sample—B,-"sample.bin by |_| NEH'IE
Format: Portable Executable (PE) v @ MALR‘VAREFEFI
Language: |x86:LE:32:default:windows
Destination Folder: |MALWARE:/
Program Mame: |sample.bin
Options. ..

Click on OK and now it will load. When you get a Windows Security Alert - allow it, this is
normal. Now Ghidra has imported the file successfully and you can use Ghidra as the code
browser by dragging the file towards the green dragon. Now the analysis

part will start - and this might take a little while. Tool Chest

y
If Ghidra asks you if you want to analyse it now - click on yes. Don't click on % # v
anything - just continue by clicking on analyse. This may take a few minutes. Active Project: MALWARE
This can be seen in the bottom right of the program: a loading bar. -l MALWARE

B

blmpcﬂﬂemhsSummaw

e Project File Name: sample.bin
D] Last Modified: Mon Feb 13 22:11:26 CET 2023
i Readonly: false
Program Hame: sample.bin
Language ID: X36:LE:32:default (2.13)
Compiler ID: windows
Processor: X868
Endian: Little
ddress Size: 32
Program Trees Iij E} B x
~p— Now the interesting things start. The Program Tree is similar to
=I sampie. bin . .
[Headers previous programs such as CFF Explorer or pestudio, for example.
~[F] text
: rdia; Symbol Tree is a specific section that provides you with more
~[F] .rsrc details.
~[F] reloc
~[Z] DebugData
tdb Imports are the names used by the malware / code / program.
Exports are names being exported by the program.

Program Tree

Functions are specifically used within the code.

D%Svrrderee |£| X
?"%‘Emwz Once the analysis phase is done - you can proceed with
-0 Expor
- [Functions analysing the center panel - in which you can find the code of
4O Labels the program.
?--%Q}Ehsses andefined __ stdeall entry(void)
F- amespaces assume FS OFFSET = 0xffdffooc
AL:1 <RETURN>
There are two important aspects: security cookie and a entry
JMP parameter. The JMP will take you to the Main CALL __ security init_cookie
function.
JMF FUN 00427c5Sé

Here you will find a function with three parameters:

L . .) pWVWVard = (VARIANTARG **) wwinemdlni);
This is the actual Windows Main function! — .

iVar2 = FUN_004047d0{0x400000, 0, ppVVar3) ;
)))) _exit{iVari);
Look in google for MSDN windows main function args.

Here you will investigate this main function, as here is where everything starts.
Once clicking on one of the parameters within the main function - we get a
IsDebuggerPresent function. The program itself is testing if a debugger is present - if it is not

present it will run the malware. Otherwise it will just print a simple message and stop.

In oder to stop this behaviour from happening - since we want to run the malware - we
need to change this parameter. For this we will use the tool xdbg.

FUN_00403766 (param 1, &local b);

BVarZ = IsDebuggerPresent():

if (BVar2 != 0} |
MessageBoxd ((HWND) 0x0, "This is a third-party compiled Autolt script.”™, ™" ,0x10);
goto LAB 00403c75;

}

if (DAT 004c52e0 = 0} |

Dal UlsCaozic = UXITITTIITT M

1

elae |
if (DAT 004c52=0 == 1) {
FUN_00407213 (&DAT_004co250

90,1,DAT 004c52ed, 0XREEEEEEEE);

I & o = L} i

The further you dive into the code - the more you understand assembly language
instructions. Many parameters and functions are utilised in the code in order to write a
malicious program. You can also use the Function Call Graph function, in the Window tab
to see functions correlating with parameters, or the Function Graph function. Both of them
provide an excellent visual representation of functions and parameters.

If you have no idea about functions just look it up via MSDN Windows.

Xdbg debugger

Always pick the tool for the correct program - check if it is either x32 or x64 and reverse the
tool. This is effectively dynamic analysis. Click on run. We know from our previous
analysis there is a debugger present - thus we need to create a breakpoint.

ASLR: Address Space Layout Randomization. This is a security feature to randomise the
base address when the program is running.

Ghidra:
10403b7a ££ 15 30 CALL dword ptr [->KERNEL3
£3 48 00
Xdbg:

sample. bin
fLText™
".rdata”

QOBC 0000 | 00001000

OoOO8EQDO

00C 4F 000 | 0002 FO00

We need to recalculate these values. Take the first part of the .text xdbg, and add the last
part of the Ghidra expression, et voila:

€3 Enter expression to follow...

00BC3b7a

Correct expression! -> sample.00BC3B7A DDE-E 3 E?A

When we click on OK it will take us to the IsDebuggerPresent function:

1 ko

FF15 Z0FE3C400
85C0

OF85 EA960300
Al EOS2CEBO00

call dword ptr ds:[<&IsDebuggerPresent=

test eax,eax
jne sample.BFD272

mov eax,dword ptr ds:[C852E0]

Here we put a breakpoint by right clicking on the parameter, select breakpoint and
toggle. Now the program will stop at this breakpoint if you run it.

Paused
T L]

First click on Step Over and Modify the EAX value to 0 (from 1).

I 4
resssssBEERERS

Now click on Step over and see if it works. If it continues - it works. JNE means Jump Not

50 push
FF75 08 push
E8 ECFBFFFF call
FF15 30F3C400 call

BL5COD

~ QFB: EA260300
Al EDS52CE00
85C0

~ 0OFB4 FOOOO00D
23FF

Test
test

BE 3062C800

3BCT
w NER4 EFOENTAN

eax
dword ptr ss:llebp+s]
sample.BC3766

dword ptr ds:[<&IsDebuggerPresen
eax, eax

jne sample.BFD272
mov eax,dword ptr ds:[C852E0]

eax,eax

je sample.BC3Ca5

xor edi,edi

mov esi,sample.C86230
inc edi

cmp eax,edi

92 «amnla AEN2AQr

Equal - so if this is not 0, it will not jump.

LA e il IL

Jump 15 not taken
sample. 00BFD27 2

| INT 3 breakpoint at sample. 00BC3E7A (00BC3B7A)!

Hide FPU

EBX
ECX
EDX
EBP
ESP
ESI
EDI

(S

00000000
QOO0 O
O13DFBAC
01590000
O13FF94C
O13DF91E
Qo00000L
00000000

ODBC3EE20

"DEZNX01"

sample. 008

Now also set a breakpoint at bp VirtualAlloc - which you can enter in the Command
section. This can be reviewed in the breakpoints section.

B cru |#log [Notes ® Freskpoints B8 MemoryMap [/ CallStack S9SEH o Soipt] symbols L
Type Address | Module/Label /Exception state Disassembly
software
OOBCZB7A | sample.bin Enabled |gall dword ptr ds:[<&IsDebuggerPresent>]
761281B0 | <kernel3z2.d11.virtualalloc> Enabled |mov edi,edi

Now run so you are going to hit the next breakpoint: VirtualAlloc. This function is used by
malware just before it unpacks itself. It needs to allocate virtual memory in order to
unpack itself. Now we are going to jump over it.

mov edi,edi

push ebp
mov ebp.eso

push

call dword ptr ds:[<&ZwaAllocatevVirtualMemory=]

test eax,eax

js kernelbase.76396A55

mov eax,dword ptr

mov eso.ebo

ss:|flebp-4]

virtualalloc

Now we need to look for the second parameter (esp+4 or EAX):

Default (stdcall) -

1: [esp] FFFFFFFF

2: [esp+4] 0O13DES64

3: [esp+8] 00000000 EAX 013DES64

4: [esp+C] OL13DESGD "“WAWXO3™ EBX OO0 00000

t: [esp+l0] 00003000 ECX 013DESS0
Right click it and click on Follow in dump. This will be the address EAX 00000000
allocated for your virtual memory. Now jump again. EAX now is offering a EEX 00000000

. ECX 92 6F0000
return value 0: which means success! L T

Now we can check in the memory map and see the next value is ERW and PRIV - which
means the memory has been allocated:

Uetault {stdcal) Ty =

[esp+4] 05030000

[esp+8] 013DESB4

[esp+C] OODBEOCES sample.O0DBEOCES
esp+10] 00000000

esp+l14] 0003410B

LEa i TR S

J502F000 | 00001000 |Reserved (04830000) PR\ —-RW--
25020000 | 00035000 PRV ERW-— ERW-—
J50C0000 | 00001000 PRV -RW-- -RW--
Anncannnl nanennn | B azarvad ERCAE AN =~ 31 —RW——

Now you can further analyse the file with tools such as Ghidra and Process Hacker to dump
the memory. For now - this is a bit too advanced to proceed.

Reverse engineering malware sample 4

Analysis of Tesla Crypt Ransomware

File identification

Custom packer detection using PEStudio
Using xdbg debugger to unpack

Using Process Hacker to dump memory
Analysing unpacked file using Ghidra

PS C:\Tools\trid> .\trid.exe C:\Users\Freds\Documents\malware-sample-ud\demol_ransomware.bin

TrID/32 - File Identifier v2.2d - (C) 2003-16 By M.Pontello
Definitions found: 15648
Analyzing...

Collecting data from file: C:\Users\Freds\Documents\malware-sample-d\demol_ransomware.bin
.1% (.DLL) Win32 Dynamic Link Library (generic) (6578/25/2)

9.8% (.EXE) Winlé NE executable (generic) (5038/12/1)
3.6% (.EXE) Win32 Executable (generic) (u4585/5/1)
3.5% (.ICL) Windows Icons Library (generic) (2059/9)
3.3% (.EXE) 0S/2 Executable (generic) (2829/13)

We open DIE: Detect It Easy and open the malware.

Detect It Easy v3.02 - O x
File name
C:fUsersFreds/Documents jmalware-sample-4/demo 1_ransomware. bin

File type Entry point

Bas]
PE32 — 00403c40 = Disasm Memory map
.
PE I

Sections TimeDateStamp Resources

] Entropy
0008 > 2016-02-28 19:15:11 Version

Scan Endianness Mode Architecture Type

MIME
Hash

Strings

—
—
—
—

Detect It Easy(DE) LE 32 1386 GUI Signatures

compiler Microsoft Visual C/C++ (2013)[-]

linker Microsoft Linker(8.0 or 11.0)[GUI32]

Shortouts
Options
Signatures JEEp s About

Exit

gl

It did not detect any packers... that doesn’t mean they are not there. Click on Entropy. It

tells you it is 95% packed! Entropy tells you how the bits are distributed in the file. This is
not natural... It means it is encrypted / encoded. Normal files are not this random! Max.

entropy is 8.0, now it is almost at a maximum.

Entropy = O x

Total Offset
7.62913 e 00000000

Regions
Offset Size Entropy Status
PE Header 00000000 00001000 0.81143 not packed
Section(0)[" text'] 00001000 00003000 5.73930 not packed
Section(1)['para'] 00004000 000071000 197194 not packed
Section(2)['.rdata’] 00003000 00001000 1.03073 not packed
ction(3)['.data’] 00006000 0000000 764343 packed

AN BN AN N T AT i

Open the file with pestudio and let it analyse. The file-type is an executable!

description nah nahApp
file-type executable
cpu 22-bit
subsystem Gul

There are a couple of libraries, but the imports are very few!

library (4) duplicate (0] flag (1) bound (0} first-thunk-original (INT) first-thunk (LAT) type (1) impaorts (6)
CLUSAPLdII x 1
msvert.dll 2
KERMEL32.dll 2
USER32.dlI 1
Similar to the APIs. Again it indicates this is packed.
imports (6] flag (1) firsi
CreateBvent\W
memset
MemCcpy
GlobalMemoryStatus x
GetClusterResourcekey
RemoveProph,
We look into the sections and see the entropy is again VERY HIGH:
property value value value value wvalue
general
name text para rdata .data .crt
md3 A3S0DDACBATIDESIT293A3.., T3473F47F203271298E637CE.. AIHMFTE0G4CCA27848807FB.. 6GOEDZG6DABATASBE4S00DBS... 49B2CE966E
entropy 5.739 1.972 1.030 7.648 7.883
file-ratio (98.89%) 3.33 % 111 % 111 % 16.67 % 27.78 %
raw-address (00007000 (00004000 (O 00005000 000006000 (00015000
raw-size (364344 bytes) 000003000 (12288 bytes) (00001000 (4096 bytes) Oz 00001000 (4096 bytes) OsD000FD00 (61440 bytes) (00019000
virtual-address 000001000 (00004000 (00005000 Ox 00006000 0x00059000
virtual-size (625275 bytes) Ox00002CT1 (11377 bytes) Ox00000407 (1031 bytes) 0x0000031F (799 bytes) 0x000523D0 (336848 bytes) 0x000186B5
characteristics
value (x 60000020 (x 60000020 (060000021 O CO000040 (O CO000041
writable x x
executable x X X
shareable
self-modifying
virtualized
items
import (000005180

So... we need to debug it and unpack it with xdbg. Since we saw it was a 32x executable -
we will use x32 xdbg. Again: choose options and adjust the settings to exclude System

Breakpoint and TLS Callbacks.

Events Enigine Exceptions

Break on:

[] system Breakpoint®
B Entry Breakpoint™
[] Exit Breakpoint™
[TLS callbadks*

[] DL Entry

[] OLL Load

[DLL Unload

[] Debug Strings

Disasm GLI Misc

[] Thread Entry

[Thread Start

[] Thread End

[system TLS Callbacks*
|| System DLL Entry

|| System DLL Load

[] System DLL Unload

Now open the malware, and don'’t forget to select all files. We start by putting a bp on

VirtualAlloc.
B8 cru [rlog [Notes ® Breakpoints M MemoryMap [) CallStack S@seH o saipt s
Type Address |Module/Label/Exception State Disassembly
Software
7612B1B0| <kernel32.dl11.vVirtualalloc> Enabled |mov edi,edl
Click run until the breakpoint. And Jump to VirtualAlloc.
i | 7633F377 s0 push eax = "
! o 7533F378 64 FF push FFFFFFFF
! @& 7633F37A FF15 A4974276 call dword ptr ds:[<&ZwAllocatevirtua
1 ®| 763IZF380 BLCO test eax,edx
| r—---® v OF88 CD76&0500 js kernelbase.76396A55
.] 8B45 FC mov eax,dword ptr ss:|[ebp-4]
.] SBES mov esp,ebp
e 5D pop ebp
o ™ C2 1000 BEEL 10
: ! . CC jnt3
Now click on the EAX and select Follow in Dump and notice it is empty.
B4 Dump 1 4% Dump 2 B4 Dump 3 B4 Dump 4 4% Dump 5 @8 watch 1 1 I> n
Address | Hex ASCIT
OOB1OOC0O [OQF 00 00 00|00 00 00 OO(00 OO0 00 00|00 00 00 O0(K. e e eeaas, |
00B10010 (00 OO0 00 00|00 00 OO0 OO(00 OO0 00 00|00 00 00 00| & .ceee e eeeenna,
0oOB10OO20 (00 OO OO0 QOO0 00 OO0 OO(00 OO0 Q00 00|00 00 00 00| . caeeeesannnns,
0OB10O0O30 (00 OO0 00 00|00 00 00 OO(00 OO0 00 00|00 00 00 00| .« .ceeeeeeeeenna,
0OB100O40 (00 OO0 00 00|00 00 OO0 OO(00 OO0 00 00|00 00 00 00| . .cee.e e eanenna,
0OB10OO50 (00 OO0 00 00|00 00 OO0 OO(00 OO0 00 00|00 00 00 00| . caeeaesannnne,
00OB100O60 (00 OO OO0 OO0|00 00 OO0 OO(00 OO0 00 00|00 00 00 00| .«@.ee.eeeeeeenna,
00BL0OO70 |00 OO0 00 00|00 00 OO0 00|00 OO0 OO0 00|00 00 O0 OO0 . .eeereurnnnns.
It is RW: Readable and Writable.
00BODO0O | DOD03000| Thread 111C Stack PRV | -RW-G -RW--
DOB10000 | DDO4ADD0 PRV | —RW-— -RW--
00C5 0000 | 00003000 PRV | —RW-- -RW--

It will now hit VirtualAlloc a second time. Jump a few times - and we see this will provide a
second allocation of memory. Follow in Dump - again empty - the second location in memory
that has been allocated for unpacking. The other dump has now been overwritten!

SELOOQD
ZE1010
3IE1020
JE1030
IEL1040
3IEL1050
JEL1O060D
FE1070D
SELOE0D
IE1090
IE1DAD
JE1O0BO
IEL1OCO
ZIEL10DO
JEL1QDED
IEL1OFOD
ZEL100
ZE1110
3IE1120
JE1130
3E1140
3E1150
3E1160
ZE1170D
IAF1T180

X8 00 00 00
o0 00 00 00

Q0 00 02 00
00 00 00 00
20 7B 41

TT

00 00 00 00
00 00 00 00

EQ A2 4E 77

BB 19 3E 77
14 00 16 00

gg EE ﬂ: TT
20 EF 44 77

40 00 00 00
:.'E ﬂE EE T

L0955 41 77
Lo B3 4E FT

Z0 55 41

TT

BQ 74 4] 77

20 03 32 77
C0 76 41 77

€0 12 2E 77
08 00 0A 0O
50 0§ 4c

TT

40 00 00 00

L0 B3 4E

T

w

i

00 00 00 00
02 00 04 00
45 15 €5 43

8E 2D AZ
02 00 00
4A 4A 6E
76 6C &7

44
00
35
1F

Qc 00 02 00
B3 BF E8 4F

7C AR 3IF 77

AS FE 00 8D
01 00 00 00
D2 25 F9 3A
E3 28 2F 4A
Qc 00 02 00
El B0 39 42

al AS S 77
B2 AS 43 FD

Wy 00y Oy 00

o0 00 00
oo 00 00
18 00 00
o0 00 00
20 04 42

B

TT

RO B2 s 77
00 00 00 00
00 00 00 00

00 00 00 00| A

20 B3 4E

EE

30 27 41

E EII HE T

IO 55 41 77

ol

Z0 6E 4]

Z0 55 41

TT

oo
00
EZ
5B

oA 00
00
D3
13

o8
00
EE
24

Qc 00 01 00
B3 53 41 44
95 BE 83 DO
04 00 00 00
50 AL S5A 9A

41 RI 40 AT

57 14 01 E2
06 00 00 00
36 5D BD 4F
a0
00
78
BE
00

BA 9C D&
03 00 00
F& DO DA
12 7A OF
0A 00 00

FF FF FF T7F

o Ca>w
e« UY=w. CAWDUAW
v o e« DENW . COWP™ Nw
{AwWpUAW. . . .D=Nw
BgAWP . BW. o v aa e e
CTAWAVAW.

e ne s WL BWP™ N
P.EWP™Nw. .@w +Nw
. 24P NwP . AwpUAw
TENWD =N . . AWpUaw
P= MwB = Nw prnawpUAw

I Bl i
N - T - |
F.AC¥p..J300....
< W5.]%0
i X W

...a(/1'5aD". 6.
IINS. .. T W
vlg.a.98.».08DUX
- 1 | A
*iBD¥HYPIZ.. ...
- P ==
. L ACMITRRT

el o

Check in the Memory Map again - and we see it is now ERW: Executable, Readable and

Writable:

00810000
00B&0000
00C5 0000
00C5 3000

A anne

0004A000

00085000
00003000
Q000D 000

N s

Reserved (00C50000)

Run again - and it has overwritten information again:

—RW-—
ERW--
_Rl"l__

PRV
PRV
PRV
PRV

A]

Rw-
ERW-~—
_Rw__
_Rw__

O0B&0000
O0B&0010
O0BG&O0Z0
O0B&0030
O0B&0040
O0B&OOS 0D
Q0BEe0060 | 7
OOB&00O7 0
OOB&D0OEBD
O0B&0020
O0B&00AD
OOB&DOBD
O0B&00CO
00B&OODO
Q0BEGDODED
OOBG&OOFD
O0B&0100
00BE60110
00BG&O120

A
00
00
00
1F

90
00
o0
oo

20
&2
&4
2E
40
63
oo
00
oo
00
o0
o8
10
00

20
GF
Al
o
69
45
00
oA
30
00
5O
00
00

00
00
00
0o
DE

85
65
DA
59
68
0o
00
00
00
00
00
00
00

03
00
00
00
00
72
20
2E
&F
G6E
&F

o0
00
00
oo
B4
GF
72
oD
co
co
co

00
00
00
00
09
&7
75
oD
40
40
40

00 00 00
o0 04 00
00 10 00
10 00 00

o0
o0
00
o0
D
72
6E
oA
89
59
59

2o 01 04 00
£0 00 0Z 01
00 00 00 00

00
o0
o0
00

o4
40
00
oo
21
61
20
24
GF
45
00
2D
0B
30
00
o4
o0
00
00

00
00
00
00
BES

o0
00
o0
oo
o1
20
&E
o0
40
35
o0
D3
o8
oo
00
o0
o0
10
00

69
00
co
06
00
39
o1
28
10
00
00
00
00

00
00
00
0o
4C
63
20
00
39
59
00
56
00
00
00
00
00
00
00

FF
00
00
BO
D
61
44
00
&F
6E
00
0o
00
00
0o
00
02
00
00

FF
0o
00
0o
21
EE
4F
00
co
co
0D
0o

00
00
00
00
54
GE
53
00
40
40
00
00
00
00
00
00
00
00
00

10
02
00
o0
10
00

o0
o0
00

&F
20
00
89
59
00
o0 -
i 1 |- R e e
o0
00
00
o0
o0
00

.. “Lir . LirTh
is program canno
T be run in DOS
mode....%5.......
+i . UoAR. oAa, oAR.
ohE, nAR. H. 8. nAR,

OCeennns

This confirms it has unpacked the executable. Now we need to dump this memory - by
utilising Process Hacker.

\fﬁlﬂ:EEdthmf

Double click and look at its memory. !! MAKE SURE TO RUN PROCESS HACKER AS
ADMINISTRATOR !! This is the reason we could not proceed in the previous malware
analysis. It does not have sufficient permissions to look into the memory. Look for the
memory location (in my case 00B6000).

Al e e e e eai=u
~ 0xb60000 Private 532kB RWX 2B kB 2B kB |
0xb&0000 Private: Commit 532kB RWX 28 kB 28 kB .Text:761281B0 b
> Oxc50000 Private 64kB RW Heap 32-it (ID 2) 12kB 12kB 8w . @
> O%c60000 Mapped 2.048kB R 4kB ak BJDumpl E
> Oxes0000 Mapped 1.5490kE R akB 8k T
> Oxffoo0o Mapped 20.434kB R 4kB 4k 00B600L0
> 0x71430000 Image 920kB WCX C:\Windows\SysWOwWs4\dusapi.di 204kB 24kB 180k gggggggg
> 0x75130000 Image 136 kB WCX C:\Windows\SysWOWs4\gdi32. dl 108 kB 12kB L DDB60040
» 075160000 Image 1.683kB WCX C:\Windows\SysWOWSH\user32.dl 188 kB kB 160k ggggggzg :
> 0x753a0000 Image 740kB WCX C:\Windows\SysWOWe4Ypertd.di 72kB 12kB a0k DDBED070
> 0x76090000

This is a RWX: This is the same! (double click on the memory address)

00000000 ::1 Sa 90 00 03 00 OO0 00 04 00 00 00 ££ £€£ 00 00 MZ....vuennnnnnn
00000010 k&8 00 00 OO0 00 00 00 00 40 00 00 OO0 00 00 00 00 e.eeeena. Bovunn..
00000020 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 00 00 6eeeeesnnnnannna
00000030 00 00 00 OO0 00 00 00 00 00 00 00 00 O 00 00 00 weeeeevnnnaannna

00000040 O 1f ba O 00 b4 09 cd 21 b3 01 4c cd 21 54 63 '..L.!Th
00000050 &5 73 20 70 72 6f 67 72 61 6d 20 63 €1 6 6e 6f is program canno
00000080 74 20 €2 €5 20 72 75 &e 20 &% ge 20 44 4£ 53 20 t be run in DO3

00000070 &d ef €4 €5 22 0d 04 Oa 24 00 00 OO0 00 00 00 00 mode....fueeennn
00000080 2k al 2e da &f cO 40 89 &£ c0 40 29 &£ cO 40 29 +...c.Q.c.08.0.0.
00000090 &f c0O 40 29 &= cO 40 29 43 06 38 29 &2 cO 40 29 o.f.n.B.H.2.n.0.
000000a0 52 &9 &3 €8 &f cO 40 29 00 00 00 0O 00 00 00 00 Richo.B.e........
00000020 50 45 00 00 4c 01 04 00 2d 3% 43 56 00 00 00 00 PE..L...-5.V....

000000cd 00 00 00 00 =0 00 02 01 Ok 01 02 00 00 1a 00 00 seeeeevnnnnannna
00000040 00 Oz 00 OO0 00 00 00 00 30 23 00 00 00 10 00 00 sawasana [
00000020 00 30 00 OO0 OO0 OO0 40 00 00 10 00 OO0 00 02 00 00 0usealfuvusannns
000000£0 04 00 Q0 OO0 00 00 00 00 04 00 00 00 00 00 00 00 seeeeeinnnnnannna
00000100 00 50 02 00 00 04 00 00 00 00 00 00 02 00 00 00 WPueeesnannannnn
00000110 00 00 10 00 00 10 00 00 00 00 10 OO0 00 10 00 00 weeeeesnanaanaaa
00000120 00 00 00 00 10 00 00 00 00 00 00 00 00 00 00 00 weeeeevnnnnannna
00000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weeeeevnnnnannna

Now we can dump this by clicking on save. We have now successfully dumped this
executable.

(] Mame
D demo1_ransomware.bin

D ranscmware_dump.bin

Unpacking / analysing the dump file

Open up this file in pestudio. It seems like this is the wrong file... no libraries and imports!

----- » optional-header (GUI)

----- = directories (invalid)

----- > sections (self-modifying) *
- | libraries (n/a)

imports (n/a)

..... il
..... =
----- abc strings (463) *
We repeat the x32db steps again and note the correct addresses:
00B20000
00B70000
50B20000| 0oo4aoon| T T T PRV | -RW-— R~
O0B7 0000 | 00085000 PRV ERW-- ERW--
00C 80000 | 00003000 PRV —RW-- —RW--
00C&2000 | 0000D0O00 | Reserved (00CE&0000) PRV -Rw--

We will now dump a different location. It started dumping in the first address.

* Oxb20000 Private 296 kE RW
Oxb 20000 Private: Commit 296 kB RW

* Oxb 70000 Private 532kE RWX
Qxb 70000 Private: Commit 532kB RWX

Once we have this file dumped - we look further into it via Hex Editor (010 editor) and
search for 4D5A.

00 Q0 EQ CC 0 Qg B0 CC BOQ] g

CC FF

.
ah L

ogram cannot be
run 1n DOS mode.

LA

3

o I N

In theory you now have to look for the correct 4D5A value, as
there are multiple ones. Normally you should open every single
one - but this time we know it is the second value.

We now select all the wrong bytes (the ones before MZ) and
delete them. We save this and open this in pestudio.

It may take some times until you have it right.

We now finally see we have libraries and imports! And the
correct compiler-stamp. We now have way more imports!

library (12} duplicate (0) flag (3] bound (0) first-thunk-original (INT) first-thunk (IAT) type (1) impaorts (150)
gdiplus.dll

SHLWAPL.dII

PSAPL.DLL x
ntdll.dll

KERMEL32.dll

USER32.dlI

GDI32.dII

ADVAPI32.dIl

SHELL32.dII

ole32.dll

MPR.dIl x
WINIMET.dII x

— . |2
[T e TP e Y N S e - R)

Ghidra analysis

Create a new project... just like last time.
@ Import /C:/Users/Freds/Documents/malware-sample-4/ransomware_dump_new.... X

Format: Portable Executable (PE) R @
Language: |x86:LE:32:default:windows
Destination Folder; \Malware-sample-4:/

Program MName: |ransomware_dump_new. bin

Options...

Cancel

Now open the file and look for two parameters: Check WindowsPE, uncheck PDB.

— e ———————— . —— e g e e

.-} WindowsPE %86 Propagate External Parameters

[] (1T L PR . JRPRFSPURSR, T ey,

] FDE Universal

Analysing has started - this will take up a few minutes again.

Now look for the entry point, go to Exports and click entry.

andefined _ stdcall entry (void)

entry I
=8 53 CALL security _init cookie

aa

39 fe JME FUON_ 0042847k

We have our famous security_init_cookie and JMP - famous for Windows files. The FUN
signature could be for the WINMAIN. Open up this signature.

_ wwincmdln();
local 24 = FUNM_004lefcO():

if {local_20 == 0) {

_exit{local 24);

https://learn.microsoft.com/en-us/windows/win32/learnwin32/winmain--the-application-entry-
point

Now change / edit this signature:

£2) Edit Function at 0041efc0

int WWinMain(HINSTANCE hinstance, HINSTANCE hPrevinstance, PWSTR
pCmdLine, int nCmdShow)

At this point you can pretty much go “bonkers” and analyse even
further. This is, for now, the stopping point of this analysis.

https://learn.microsoft.com/en-us/windows/win32/learnwin32/winmain--the-application-entry-point
https://learn.microsoft.com/en-us/windows/win32/learnwin32/winmain--the-application-entry-point

Reverse engineering Malware sample 5 (Simda Trojan)

Analysis of Simda

File identification

Custom packer detection using PEStudio

Identifying abnormal function epilogue

Using Ghidra and xdbg to analyze abnormal epilogues
Unpacking and dumping embedded code

Alternative to VirtualAlloc method

A normal function:

.Each function maintains the frame
.A dedicated register EBP is used to keep the frame pointer

.Each function uses prologue code (blue), and epilogue (yellow) to
maintain the frame

my_function:
push ebp ; save original EBP value on stack
mov ebp, esp ; new EBP = ESP
; function body

Sometimes there can be abnormal function epilogues:

Unpacking code is often “one-way”, look for code with abnormal
transfer control

Lack of standard epilogue, JMP instead of RET, PUSH-RET and other
deviations are good indicators

Often occur at the end of a function, don’t get caught up in all the
details!

The below is a fake return. Because the RET will NOT RETURN to the PUSH anymore.

PUSH STACK
RET m EMBEDDED
CODE

The below is an unexpected jump: the JMP will come unexpectedly straight to the RET.
RET will jump to the Embedded Code instantly.

JUMP m EMBEDDED
CODE

Shell code:

e Historically shellcodes are machine code that spawns a command shell (eg, cmd or
bash)
Injected into vulnerable programs
Used in the above way = exploits
In Malware, shellcodes can do anything, eg, unpacking malicious instructions, or
inserting fake rets or unexpected jumps

How to write shellcodes:
https://www.sentinelone.com/blog/malicious-input-how-hackers-useshellcode/

An example of a complex malware can be seen in the screenshot below:
This is a two layer unpacking mechanism, opposed to only unpacking it in one layer.

| nddress Sl Stack

SHELLCODE

:> pus [Adaress — 2

RET |:'> EMBEDDED
CODE

Identification
Tools\trid> .\trid.exe

- File Identifier
Definitions found: 15

\Documents\malware mple-5\demo2_simda.bin
(u585/5/1)

This is clearly an EXE (but its extension is .bin?). Open up DIE and look into the entropy
again. Mediocre entropy - and no packer, again.

I8 Entroy -] pd
I rvopy T Sort -

| 5 Offset
5.72902 not packed 00000000

Offset y Status nple-5/demo?2_simda.bin
PE Header 00000000 DDOD0A00 00558 not packed

00000400 DDOCS000 578611 not packed

000c5400 00003200 1.44433 not packed Eny El

000c8600 00000200 1.49032 not packed N Import

N[1221121 000c8800 0DODO400 0.99631 not packed

Anaan AnA-A_An ARnARARn AARETY ok ohod

Microsoft Visual C/C++(2008)[-]
Microsoft Linker(9.0)[GUI32]

In pestudio we notice there is no known signature, it is executable:

descrniption

file-type

[glall]

Command line HAE

executable
32-hit

signature

A number of indicators are present again: abnormal sections, few libraries and imports.

library (3)
KERMEL32.dlI
USER32.dlI
ADVAPI32.dII

property

general

name

md3

entropy

file-ratio (99.88%)
raw-address

raw-size (857088 bytes)
virtual-address
virtual-size (833299 bytes)

characteristics
value

writable
executable
shareable
self-modifying
virtualized

items
import

duplicate (0)

wvalue

dext

OECE3EDFA5AAZAIIBSEAERT..,

5.786

94,03 %

000000400

Ox000C5000 (806912 bytes)
000001000

0x000CAFB1 (806833 bytes)

O 60000020

x

flag (0)

bound (0) first-thunk-coriginal (INT) first-thunk (IAT) type (1) imports (2)
1
value walue value value
.rdata .data 122112 2211
AB94C951B51301456EVEA458.., T4823794B0BFC243D186C87... AEA215BIFCFDE271254460E.. 4EA215B1FCFD8271254460E...
1444 1.488 0.995 0.995
149 % 0.06 % 012 % 012 %
Ox000C5400 Ox000C8600 Ox000CE200 Ox000CEC00
Ox00003200 (12800 bytes) 000000200 (512 bytes) 000000400 (1024 bytes) 000000400 (1024 bytes)
0w 000CE000 Ox0DOCADDD Ox000CBO0D 0 000CCO00
0x00003034 (12340 bytes) 0x00000234 (564 bytes) 0x00000228 (555 bytes) 0x0000022B (555 bytes)
Oae 40000040 OxCO000040 Ox 40000040 OxeA0000040
x
OxODOCBFOC

So at this point we can only assume this is in fact a packaged malware. But how do we

unpack it?

|dentify abnormal epilogue

We will use Ghidra for analysis.

@ Import /C:/Users/Freds/Documents/malware-sample-5/demo2_simda.bin

Destination Folder:

Format:

Language:

Program Mame:

Portable Executable (PE)

simda;:

demo2_simda.bin

¥86:LE: 32:default:windows

Cancel

Options...

Uncheck PDB and check WindowsPE!

When we look at the entry - this is absolutely strange. A push before a ret is abnormal.

T)

00401354 &8 %a 13 FUSH LAE 004013%a
40 00
004013589 c3 RET

LAB 004013%9a

004013%a &8 a0 13 FUSH LAB 004013a0
40 00
00401358f c3 RET

LAB 004013a0

004013a0 €5 ad 13 FUSH DAT 004013ad
40 00
004013a5 c3 RET

Right click on one of the addresses and click on disassemble. Next up is selecting a few
values and clearing it’s bytes:

LAB 00401394
00401394 68 22 68h h
00401355 %a 22 92h
00401356 13 22 13h
00401397 40 22 a0h B
00401398 00 22 0ok
00401399 c3 22 C3h
004013%a 68 22 65h h
0040139b al 22 ACh
004013%¢ 13 22 13h
0040135d 40 22 0h @
00401352 00 22 00k
0040139fF c3 22 C3h
0040130 s 22 68 h
0040132l aé 22 Aéh
00401322 13 22 13h
004013a3 40 22 a0h B
00401324 00 22 0ok
00401325 c3 22 C3h

Now go to Window and select Bytes. This opens up a hex editor.

We now change the values to 90 - as this is a no operating value.

ac al 4c 00 00 00 00 00 8k 15 ac al 4c 00

1

1| B0 ad 4c 00 50
v | o & s
1

J

L 0D
(Y4l
=
(43}

SO S0 S0 90 90 90 90 90 §g o«

L

80 90 S0 50 50 50 al 35 a0 4c 00 50 8k 04 a4 al
4c 00 51 &8 48 £d If £f 83 c4 08 3k 15 88 al 4c
00 52 al a4 a0 4c 00 50 &3 33 £d ££ £f 83 c4 03

L Uugul 349g

004013584 S0 7 S0h
00401355 50 T 40h
00401356 S0 T 40h
004013587 S0 7 90h
004013588 S0 7 S0h
00401359 50 T 40h
004013%a S0 T 40h
00401358k S0 7 90h
004013%c S0 7 S0h
00401354 S0 T 40h
0040135 S0 T 40h
00401358f S0 7 90h
0040130 S0 7 S0h
004013al S0 T 40h
00401382 S0 T 40h
00401383 S0 7 90h
00401324 S0 7 S0h
00401385 S0 T 40h
INANT A a1 RA af MAMT FLY [MAT NNdransal

Now we want Ghidra to reassemble the bits of code. Click at the top of this code and select
repair flow. Once we look at the code again we notice yet again another abnormal jumps.
When we follow the ECX we see the data is undefined.

par_oo4canss

uu} undefined4 000000000

undefined

00401130
00401131
00401133
00401135

00401130
00401134
0040113
00401140

00401144
0040114

0040l114e
00401150

00401156
00401158
004011549
0040115a
0040115k
0040115c
00401154
0040115«
0040115%
004011e0
0040116l
00401162
00401163

00401164
00401165

00401167
004011es

55

o
Ll

o
Ll

o
Ll

al

o
Ll

ad

o
Ll

ff
al

o
Ll

ff
al

o
Ll

o
Ll

al
eb

o
Ll

d2

o
Ll

d2

o
Ll

d2

o
Ll

d2

o
o,

da

o
L}

da

51
eb

o3
5d

ec
dz2
25
dc
d2

dz2
35
4c
dz2
35
4c
dz2
0d
4c
Oc

aa

Gc
aag

o
[}

aa

aa
aa

94
aa

KANENNENAENNNNNNNNNNNNNNNNNNNNNNNNNNNNNENNNNNNNNNNNNNNNNNNNNNNNNNN

fndefined

assume F5 OFFSET = Oxffdffo00
AL:1 <RETUEN>
FUN_00401130 XREF[5]:
PFUSH EBE
MoV EBP,ESE
MoV ED¥, EDX
MOV ESF,dword ptr [DAT 004calic]
MoV ED¥, EDX
BOF EBF
MoV ED¥, EDX
FUSH dword ptr [DRT_004calbki]
MoV ED¥, EDX
FUSH dword ptr [DRT_004cals0]
MoV ED¥, EDX
MoV ECE,dword ptr [DAT_004ca094]
JMFP LAB 00401164
7 2Bh
7 D2h
7 2Bh
7 D2h
7 2Bh
7 D2h
7 2Bh
7 D2h
7 gBh
7 D2h
7 gBh
7 D2h
LAE 00401164 XREF[1]:
FUSH ECX
JME LAR 00401167
LRER 00401167 XREF[1]:
RET
22 SCh 1

stdcall FUN 00401130 (void)

en
en
0o

aa

aa

Unpacking shellcode

Open up x32db (since we know it is x32...).

We will have to put a breakpoint at the point where things go somewhat janky:

10401156
00401158

ANANTTEG

Address |Module/Label /Exception State Disassembly
00401156 | demo2_simda. bin Enabled |jmp demoz_simda. 401164
+~EB 0OC Jjmp demoZ_simda. 401164
8BD2 mov edx,edx
S8BD2 mov edx,edx
8BD2 mov edx,edx
8BD2 mov edx,edx
SBD2Z mov edx,edx
8BD2 mov edx,edx
51 push ecx

When stepping over we notice we make this abnormal RET... This is not normal behaviour -
but we now have found the packed shellcode which we need in Ghidra.

Now use the following command:
Savedata path_to-Output_file, base_addr, size
savedata C:\Users\Freds\Documents\malware-sample-5\shellcode.bin, 02360000, 00087000

To find the base_addr - simply right click on the selected push to find the address in the
memory map. The size is exactly the second parameter.

| ooFEBO00| 01366000 |Reserved (00F50000) MaP -
00087000 PRV ERW-- ERW--
02470000 | 00002000 PRV | -RW-- -RW--
02473000 | 00000000 | Reserved (024700007 PRV -Rw--
Now paste the command in the Command section in x32dbg.
LI A AT OOy | 0T O | At " L Tmmmet ol il ac 1
Command;: l:::'.':.'.e.n:ls are comma separated (like assembly instructions): mov eax, ebx
| Paused |UZ§EUUUU[E?UUU] written to "C:\Users'Freds\Documentsimalware-sample-5'shellcode. bin™ |

Now import this file into Ghidra - and select the correct language.

@ Language hed

Select Language and Compiler Specification

Processor B, | Variant Size Endian Compiler

w86 default 32 litte Borland C++

w36 default 32 litte Delphi

w86 default 32 litte dang

w36 default 32 litte acc

= defat 2 litte [VisuaiStudo__
w86 default 64 litte dang

w36 default 64 litte gcc

-1 dafanilt £a i+, Vieyial €4 adi

Filter: %86 ®| iz

Description

Now click in the already open Ghidra CodeBrowser - File - Open - Analyse the new file.

Now we need the correct address - use the address from x32dbg: 023E6EDO - we do
need its offset!

We can calculate this with the calculator, and we need to subtract the base address which
we already found in the previous steps:

023E6EDO - 02360000 = 86EDO

Now go to Ghidra and select Navigation - and click Go To... and enter the address. This is
effectively the entry point.

Go to main -> click on return -> and we are now in the code again!

LAB 000%6fka b
000zZefka Sk 55 af MOV EDX,dword ptr [EEF + local_5c]
noosefkd 8k €5 98 MOV E5F,dword ptr [EEF + local_6c]
Qo0gefed 54 POP EBF
nooggfcl 58 POP ERX
Qoozefca o8 POP ERX
nonsefcy 52 FUSH EDX
J008efecd c3 RET

LG push ebp
O23EGEDL SBEC mov ebp,esp
023EGED3 B1EC 80000000 sub esp.80

We need to put a breakpoint at the RET address. Return to x32dbg... A little bit of math
wizardry again: the address mentioned above + the base address!

023E + 6fc4: 023E6fc4

Address |Module/Label /Exception State Disassembly
00401156 | demo2_simda. bin Enabled | jmp demo2_simda. 401164
023EGFC4 Enabled |pFet

Now we run again and jump back. We notice it is sending us back to the original location.

We can use a Plugin Scylla to unpack this newly found code.

B soi:x86v0.9.8 - X

File Imports Trace Misc Help

Attach to an active process

8636 - demoZ_simda. bin - C:\Users\Freds\Documentsimalware-sample-5idemo?_simda. bin ~ | | PideDLL

Imports
Show Invalid Show Suspect Clear
IAT Info Actions Dump
OEF 00402037 IAT Autasearch Autotrace Dump PE Rebuild
VA
Get Imports Fix D
— i Dump
Log

Module parsing: C:\Windows\SysWowsdple32.dl
Maodule parsing: C:\Windows\SysWOWa4\combase. dll
Module parsing: C:\Windows\SysWOwWaHoleaut32.dli
Module parsing: C:\Windows\SysWOWe\psapi.dl
Loading modules done,

Imagebase: 00400000 Size: 000DADD0

Imports: 0 + |nvalid: 0 Imagebase: 00400000 demol_simda.bin

(5= (RE_ Sy w w T

Click on IAT Autosearch. It is the table containing all the imports for all the functions. We
need this so the program can run normally! Click on Get Imports!

Now dump it and fix dump. It will create a new file -> SCY.

IAT Search Adv: IAT VA 0040C000 RVA 0000C000 Size Ox03E4 (948)

IAT Search Mor: IAT VA 0040BFFC RVA 0000BFFC Size Ox03B3 (352)

IAT parsing finished, found 224 valid APIs, missed 0 APIs

DIRECT IMPORTS - Found O possible direct imports with 0 unigue APIs!

Dump success C:\Jsers\Freds\Documents\malware-sample-5idemo?_simda_dump.exe

ort Rebuild success C:WUse

Imports: 224 # |nvalid: 0 Imagebase: 00400000 demo2_simda.bin

. L T n] T

Again - add this file to Ghydra and it finally correctly identifies this file:

@ Import /C:/Users/Freds/Documents/malware-sample-3/demo2_simda_dump_5CY... X

Format: Portable Executable (FE) v | @
Language: |x8&6:LE:32:default:windows
Destination Folder: | simda:/

................. Program Mame:..|demo2. simda, dump, SCY.exe

Options...

Cancel

r——

Do the same steps as always: file -> open -> analyse! We now see a lot of Imports!

= [Imports

G-[] ADVAPI3Z.DLL

&[] DMSAPLDLL

&[] GDI3Z.DLL

&[] IPHLPAPLDLL

[] KERNEL32.DLL

&[] MSVCRT.DLL

G-[] MTDLL.DLL

&[] OLE32.DLL

&[] OLEAUT32.DLL

&[] PSAPLDLL

E-[] SHELL32.DLL

F-[] USER32.DLL

(] WININET.DLL

B[] WS2_32.DLL e e e
5 Exports - § CreateThread

B entry G- f. CreateToolhelp32Snapshot
=) EF) Functions -- f. DeleteFilea
e E- £ DeleteFilew

Open up kernel32.dll and notice the function CreateToolHelp32Snapshot. This is a tool
used by malware to identify if malware analysis is performed. Double click and go to the
function.

undefined CreateTloolhelp32Snapshot ()

undefined AL:1 <RETURN:
26% CreateTooclhelp32Snapshot <<not bound>>
PTR_CreateToolhelp32Snapshot_0040cl20 XREF[3]: FUN_0040109£:004010a£ (R),
FUN_004017b£:004017£0 (R),
FUN_00401b858:00401kes (R)
0040cl20 70 &8 13 76 addr KEERNEL32.DLL: :CreateToolhelp32Snapshot

Click on the third value on the right.

UUSULITY UT o L% ey UWULLL WLL (LU T Lulml_ LU Lol
IZID4leE9 ff 15 20 CALL dword ptr [->KERNEL32.DLL::CreateToolhelp32Sna...
cl 40 00
00401kef Bk 34 e3 MOV EDI,dword ptr [->MSVCRT.DLL:: strcmpi]
c2 40 00

And here we effectively see this malware is trying to evade malware analysis. This is the
most advanced search we’ve done so far - and is also the end of the course. You can still
search and scavenge further.

