
Reverse Engineering and Malware Analysis
Fundamentals

Installing a Windows 11 VM
We already did this during classes and during projects. For this reason i am just going to do
this on my own. This time we are installing W11 with a number of precautions:

https://www.youtube.com/watch?v=qWj-n4id9EI

Requirements:

● Guest addition.
● Shared folder.
● Base snapshot.

Windows specific requirements:
● Disable windows update
● Disable windows defender (required for malware analysis tools)
● Disable hide extensions
● Show hidden files and folders
● Create snapshot
● Disable OneDrive…:

https://www.groovypost.com/howto/disable-onedrive-on-windows-11/

We never took snapshots before… which is an ideal solution to revert to a previous state.
Simply click on the VM machine on the “Machine” tab and “create a snapshot”. Once you
have named the snapshot you can simply view it in the VBoxmanager, easy for reverting to a
previous state:

Installing Flare VM for malware analysis
This will install all the required tooling for malware analysing and reversing.

GitHub - mandiant/flare-vm - Follow the installation instructions.
A couple of restarts / logouts will be performed. Stay at your VM’s side.

https://www.youtube.com/watch?v=qWj-n4id9EI
https://www.groovypost.com/howto/disable-onedrive-on-windows-11/
https://github.com/mandiant/flare-vm


Files and formats
We need to understand the contents of a file. This is mostly done with hex editors. In this
course we will be using 010 Editor.

An example file hello.txt is created with the contents “hello world!”. In hex this is displayed as
following:

We can also perform this with a tool called Trid. This is file analyser specifically meant for
analysing what a file actually does, or is.

Installation is done manually by going to the official website. Command line tool is easiest to
set up: https://mark0.net/soft-trid-e.html

● Install the Win32 package: this is the base program, trid.exe.
● Install the TrIDDefs.TRD package: this is required for the tool to run.

Once installed we can analyse the files provided by the instructor.

https://mark0.net/soft-trid-e.html


This is an example for the first file specified - and tells us this is a Win32 Executable MS
Visual c++ file.

The second file is apparently a ZIP file. Again - the name of the file, nor the extension, tells
us this! The analyser does.

The third file is clearly a .PNG file. Again - no extension or additional information is provided
by the base file itself. You need to analyse the binary part of this file.

Virtual memory and the portable executable (PE) file
In this lab we will further look into process creation of files and how the virtual memory
works.

Process creation
We will look firstly into process creation - how do programs create processes?



In order to analyse such processes we need to have a tool called Process Hacker.
Found here: https://processhacker.sourceforge.io/downloads.php

This program can analyse processes created by a certain program.

Here you will see the following:

● Name: the name of the process.
● PID: Process ID. A uniquely identifiable parameter (ID) for running processes.

And much more information. With the test files provided - we need to change the extension
to an application - something we can run. Hereby we change the extension to .exe.

https://processhacker.sourceforge.io/downloads.php


Now we simply inspect the process hacker and the process:

When right clicking, or using enter, we can open up even more details.

Here we can see that explorer.exe is the parent process. This is correct - since we started
the application in the explorer tab, which is the File Explorer.

It is important to take a look at the command line feed since specific parameters can be
given. Malware can possibly have very specific processes and parameters included.

Before it is executed - it is just a file. This file needs to be loaded in the
memory and executed. Once this is done - it becomes a process.

The other test files cannot be run properly - possibly due to not having the correct
installations. The first file we analysed above was running correctly.



Virtual Memory
Systems have limited amounts of RAM and require it to run programs. Virtual Memory can
be used to circumvent the regular available RAM by applying a lot of VRAM to a program in
the background - more than your available RAM.

It involves three main components:

● CPU: operating system (OS) loads the program into RAM and creates a process. At
this point the CPU can read the instruction in the RAM and run the program.

● RAM: your main RAM (Random Access Memory). Hard disk programs will be run
here firstly in order to run. VRAM creates a virtual illusion to the process that it has a
lot of RAM available to run.

● Hard Disk: where your program is stored.

VRAM is allocated to a process and telling it “you have 4 GB of RAM” available! While in
reality you only have 1 GB of RAM. This process of VRAM allocation can be done for every
single process. How is this possible?



The reason for this being possible is relatively “simple”. The hard disk is used as virtual
memory. Hard disk + Physical memory = Virtual memory. The hard disk will create the virtual
memory - it will act as virtual RAM.

Each page is just a block of memory. Process1 takes 1 page in the physical memory, and
page2 is also loaded there. Process2 also needs memory - and is allocated to the physical
memory. Page2 is, at this point, allocated to the hard disk as virtual RAM. Once process2 is
loaded correctly - Page2 (from Process1) will swap back to physical memory to resume
execution.

This is done so fast - a user will not notice this at all. We make use of the hard disk to create
an illusion of huge amounts of RAM availability - which in essence is virtual RAM!

Example time: we open the file from the previous task again in Process Hacker and view the
memory tab.

In the first block you can read the Base address.
In the second block you can read the Type: Mapped or Private.

You can even open up the components even further.

● Mapped: parts of the program need to be mapped in virtual memory
for use by the process. Processes can modify the contents of the file
in the hard disk by directly modifying the mapped contents in memory.
It is mapped to the hard disk - reference.

● Private: not shared with other processes. Mostly used by malwares.

Stack(s) is where the process is storing local variables.
Images are the DLL(s) (Dynamic Link Libraries) - modules of the program.
Private can be commit, reserved or free.



● Commit: the page has a physical area in RAM allocated for you.
● Reserved: it has not gotten physical memory reserved yet - just being reserved.

When this happens - it will change to Commit.
● Free: addressed in virtual memory - but has not been assigned or made available to

the process just yet.

In the column Protection you can see RW, R, WCX,...

● (W) Write: contents in memory can be read and written to.
● (RW) Read: contents in the memory can be read - but not write to this memory

location (or execute).
● (WCX) Execute: execute means that location contains code that can be executed.

Use: if you click on a memory block you will get a hex view
- the raw bytes in that certain location (one record in the
last screenshot). 0x10000 contains all this information. Left
you can view the bytes, right you can view the ASCI
annotation of the bytes.

In order to further investigate these strings - you can use
the Strings button. Here you can view the specific address
allocation and the results from this address. Virtual
memory provides a lot of information for malware
detection. Here you can find IP addresses and more.



PE files
PE files are Windows Executable files. This can be easily found when analysing the files:

We can also use the tool CFF Explorer in order to analyse this program further:

On the left side you have a few collapsible headers.

● Dos header: this is the first header. The first “member” is e_magic. This displays
your first bytes - 0: 4D and 1:5A. Translated into MZ when looking at ASCI. The
header member itself places these bytes in reverse. Intel systems store the bytes in
reverse order due to a convention. Word means two bytes.

MZ + “This program cannot be run in DOS mode” + “PE” tell us clearly this is
a PE file.



● Optional Header: the process needs to be stored into memory. It needs to allocate
space into virtual memory - how does it know what location will be allocated to this
process? The Optional Header will tell us all of this information.

When we look at the ImageBase value this is exactly the same as mentioned in Process
Hacker. Both of them “link” together! But this might not always be the same. They are
relative virtual addresses (RVA). If you want to find the actual location of this value - take
the Base address + Value and that should be our entry point.

Now we will take a look into deconstructing another header to look into the above theoretical
explanation. We will look into the P header. This is also called the Nt header and optional
header. Remember: the Value is always the opposite of the binary.

The File Header store all kinds of data inside an executable.



The section header will include a variety of executables and data. When we look into the
File Header again - we see a NumberOfSections member - which correlates to the section
headers.

● Text: contains text.
● Data: contains some form of data.

Do know this is NOT RELIABLE for malware. Sometimes this can be executable code.
You can clearly see the Virtual Address which is used for virtual memory. We need to sum up
the base address + the value in order to look for the correct actual address.

The Optional Header can be used by Windows to copy the file into virtual memory.

The Data Directories contain the size and RVEs of directories and tables. Some of them
are blank - which means there is nothing there - but some of them include data.

When looking in the tool x32dbg, which is a debugger, we can see this magic come to life.
Here you clearly sum up the two values: base address + value of another member.



The raw size and the virtual size are no the same:

We can review this in Process Hacker:

This is clearly our text value and our data value (take a look at the Virtual Address + Base
Value)!

We will look into the DLL section of this file and the Import Directory:

In the above screenshot you can see the dll msvcrt.dll being started by the process, which
can be viewed on the left side via Process Hacker.

The other two files included in this lab are a separate .dll and .exe. The exe needs the dll to
function! Thus will use dll files directly:

When we look one step further in the CFF Explorer we can clearly see the dll being utilized:



This is the reason why we also take a look at the Import Directory. It clearly utilises certain
.dll files from our system! When we take a look into Process Hacker we see the same
happening:

At the bottom - sample-4.2.dll is again being displayed by the sample-4-3.exe process.

This is how executables utilise .dll files.



Windows Internals
Malware abuses operating system functionalities. Malware analysts need to be aware of this!

Win32 APIs: Application Programming Interface - just
another name for Windows functions!
They can be found in the System32 directory.

Kernel32.dll contains many functions used by
programmers and malware authors.

In CFF Explorer we can review this dll:

Other .dll’s provided by windows can be viewed at the right.

Visual Studio SDK utilises the underneath .dll’s.



When we take a closer look into win32 API docs:

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

CreateFile is not only just for creating files - it can also read files. It depends on the
parameters passed towards this API.

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea


Windows APIs
Information provided on the next slide:

● CreateFileA and CreateFileW are provided by kernel32.dll
● Another version is NTCreateFile which is provided by ntdll.dll
● It is much low-level because it is closer to the kernel
● Both CreateFileA and CreateFileB calls NTCreateFile internally
● Ntdll.dll then uses system calls (SYSCALLS) to execute the task
● SYSCALLS are kernel level functions
● Kernel Level functions is the heart of the Operating System
● User Level functions (APIs) make use of Kernel Level functions

Extended version of an API:

● Some APIs has an extended version
● Eg, VirtualAllocEx is the extended version of VirtualAlloc
● They are used to allocate virtual memory
● VirtualAlloc allocates virtual memory for the current running process
● But VirtualAllocEx allocates virtual memory for other running processes
● Malware frequently makes use of them

There are also Undocumented APIs:

● NT APIs in ntdll.dll are not officially documented by Microsoft
● But hackers have reversed engineered it and put up unofficial docs
● Check out: http://undocumented.ntinternals.net/

NtCreateSection is an undocumented API commonly used by malware for a
technique called Process Hollowing: a security exploit in which an attacker removes
code in an executable file and replaces it with malicious code. The process hollowing
attack is used by hackers to cause an otherwise legitimate process to execute malicious
code.

APIs performing file operations:

● CreateFile
● WriteFile
● ReadFile
● SetFilePointer
● DeleteFile
● CloseFile

APIs performing registry operations:

● RegCreateKey
● RegDeleteKey
● RegSetValue

http://undocumented.ntinternals.net/


APIs for virtual memory:

● VirtualAlloc
● VirtualProtect
● NtCreateSection
● WriteProcessMemory
● NtMapViewOfSection

APIs for processes and threads:

● CreateProcess
● ExitProcess
● CreateRemoteThread
● CreateThread
● GetThreadContext
● SetThreadContext
● TerminateProcess
● CreateProcessInternalW

APIs for DLLs

● LoadLibrary
● GetProcAddress

APIs for Windows Services:

● OpenSCManager
● CreateService
● OpenService
● ChangeServiceConfig2W
● StartService

APIs for Mutexes:

● CreateMutex
● OpenMutex

All these APIs will help in malware analysis and behaviour.

Behaviour identification with APIs
● Usage of APIs per se is not necessarily malware
● You need to analyse:
1. Context
2. Parameters supplied to APIs
3. Sets of APIs used in sequence

Take the case of Process Hollowing…



Example 1: Process Hollowing:

● It is a popular technique used by malware
● It uses CreateProcess API to create a brand-new process in suspended mode
● To do that, it sets dwCreationFlag = CREATE_SUSPENDED
● Normal programs do not do that

Example 2: WriteProcessMemory:

● It writes into the memory of another process
● Debuggers use this – so by itself it is not malicious
● But if a process also uses VirtualAllocEx and CreateRemoteThread

then it is malware
So, the set of APIs used in sequence make it malicious

Using Handle to identify Sequences:

● Handle is a reference to files, registry, memory and processes
● Processes makes use of handles to perform operations on the object it refers
● These handles are parameters passed to processes
● Tracking these handles help us identify sequence of APIs for any process
● These sequences help us confirm if a process is malware
● take the case of CreateFile…

Sequences: hFile1 and hFile2 creates certain .txt files… it will save these in the handles. In
number 3 and number 4 both of these Handles are used by WriteFile. 1 - 4 and 2 - 3 are the
same process, thus this is the logical sequence.



Intro to Static and Dynamic Analysis

● Static Analysis: without executing the malware.
● Dynamic Analysis: executing the malware and THEN doing the analysis.

Static analysis

● Look for a hash: and look into, for example, VirusTotal, if someone else has done
analysis on this specific hash. You cannot “lie” on these files - as the internal
elements of the file will be the same.

● Strings: encoded strings, crypto strings,...
● PE Header: analyse the PE header - and look into what the file is exactly doing.

Tools:

● File type analysis: identify the file type. Which type of file is this?
○ Tridnet
○ ExePE Info

● Searching for embedded strings:
○ Bintext
○ Strings

● Search for encrypted strings: it can reverse the strings.
○ Xorsearch

● Examine PE headers:
○ CFF Explorer
○ PE Studio

● Create a cryptographic hash: Hashmyfile



Dynamic analysis

● Monitor changes: create a snapshot before writing the malware. Once we have a
snapshot - execute the malware - and let it run for a couple of minutes. Once it
performs changes to the OS. Once finished we take a second snapshot. From the
comparison we look into the changes made by the malware.

● Behaviour monitoring: study the running malware. Is it creating new processes?
Has it written new files, or deleted new files,...?

Tools:

● Take snapshots: take two snapshots and look into the changes.
○ Regshot

● What is the persistence mechanism: try to survive reboot, for example, by creating
new registry entries. Or creating new copies of itself auto-starting when running other
programs.

○ Autoruns
● Capture network connections / packets: is it trying to connect to the outside

world? Fakenet will intercept packets and send a fake reply. It will NOT allow the
malware to talk to the outside world.

○ Fakenet
○ Wireshark

● Process monitoring: analyse all APIs used by the malware. Saving the file in a .csv
file obtained from Procmon - we can create a graph in Procdot.

○ Procmon
○ Procdot



Some types of malware resist analysis or reverse engineering. But every malware will have
to unpack into the memory. Thus memory analysis can be used to look into these types of
malware.

Additionally you need ProcDot and BinText.
https://www.procdot.com/webhelp/index.html?installation.htm
https://www.procdot.com/downloadprocdotbinaries.htm

Static analysis of malware sample 1

The first malware is a malicious PDF file.

First we will scan the file with trid.exe to analyse the file. We can clearly see this is not a
PDF file but a Win32 Executable.

We will need pestudio to analyse the file further: https://www.winitor.com/download2
This tool will detect any malicious behaviour.

https://www.procdot.com/webhelp/index.html?installation.htm
https://www.procdot.com/downloadprocdotbinaries.htm
https://www.winitor.com/download2


The indicators will tell us how severe this malware file is.

Level 1 is the most severe - and they tell us this is definitely a malware file. The strings
section tells us what values the file is using (or rather abusing). The flags indicate this is
possibly a malicious process.



Later on in the list we notice socket values, and connection values which
definitely do not belong to a standard PDF file:

We can clearly see at the left there are various malicious techniques such as Process
Discovery, or Process Injection.

Looking at the imports (flag) section we see a more clearer picture:

The InternetOpen imports clearly indicate this file can download other malicious files.
VirtualProtect and DeleteFileA are specifically used by malware. It can delete itself (the
copy) and create copies elsewhere - and the VirtualProtect is used to change the permission
for memory. You want to unpack other code, and execute it.



The Process imports monitor your system for analysis tools. It will resist processes for
reverse engineering and malware analysis tools.

The libraries can give us a better indication on what is actually being imported.

WS2_32 is used to connect to the internet (Win Sock library).
ADVAPI32 is used to create new registry keys / entries.
USER32 is used to create a specific user interface.

Now we need a hash. We can use this to investigate on the internet. A file may be able to
lie, but a hash never does.

Clearly VirusTotal, a file analyser, identifies this file as malicious. Some files are too large
to upload - this is why we create a hash.

https://www.virustotal.com/gui/file/15cc3cad7aec406a9ec93554c9eaf0bfbcc740bef9d52dbc3
2bf559e90f53fee

https://www.virustotal.com/gui/file/15cc3cad7aec406a9ec93554c9eaf0bfbcc740bef9d52dbc32bf559e90f53fee
https://www.virustotal.com/gui/file/15cc3cad7aec406a9ec93554c9eaf0bfbcc740bef9d52dbc32bf559e90f53fee


Dynamic analysis workflow

1. Start procmon, then pause and clear
2. Start Fakenet
3. Start Regshot, then take 1st shot
4. Once 1st shot completes, Resume procmon
5. Run Malware for about 1 – 3 mins and study fakenet output
6. After about 3 mins pause procmon
7. Use Regshot, to take 2nd shot
8. Once 2nd shot completes, click Compare->Compare and show output
9. Study Regshot output

ProcMon is used to process the malware. FakeNet starts to monitor the internet traffic and
intercept any attempt by the malware to connect to the internet. It will provide a fake
response to the malware.

ProcMon is paused since it does not need to register the changes made by Regshot.
RegShot will create a new snapshot of the C drive - the root of the filesystem. Once this is
done - it will pause by itself. Now we resume ProcMon. RegShot will then take a second
shot to see the changes being made. This will be used to compare the changes made by
the malware. Now we compare them both and we can study the output.

● In procmon apply these filters:
● ProcessName is: malware-name
● Operation is:

○ WriteFile
○ SetDispositionInformationFile
○ RegSetValue
○ ProcessCreate
○ TCP
○ UDP

The below registries are mostly abused to create persistence.



It is also important to understand the difference between 32-bit and 64-bit files. This will
make files backwards compatible.

Dynamic analysis of malware-1
Change your settings to host-only network!! To make sure Worms cannot spread through
the internet.

First you need to start ProcMon and clear everything + stop monitoring:

Deactivate the square icon, and click the trash bin icon.

Now we will launch FakeNet.

Next up is opening RegShot for new snapshots. This might take a while. Do not click Shot
2 yet! Select the correct Scan dir (C:\ drive) and click 1st shot.



Now we will start ProcMon again and we will execute the malware itself.

FakeNet is blocking requests but since i have deactivated my internet - it isn’t displaying
correctly. Now we will pause ProcMon and create our second shot.

Now click Compare and Output.



Here we can see it is creating keys - and doing a lot of things. One sign of compromise is
the files added and files deleted section.

Deleted files:

Created files:

Now we will take a look at ProcMon again and issue a filter and click on apply.

Add all the filters from the previous chapter!

Make sure in Options -> Columns Thread ID is selected.

Now we will save a file. The first one is a standard PML file (default settings). The second
one is a CSV format. Make sure to select All events.



Now we will look into visualising the malware via the tool ProcDOT. Click on the first three
dots to select the file. Click on the second dots to launch the analyser.

Once it is done you double click on the malware process - budget-report.exe. And click on
Refresh. Here we will be able to see artefacts or evidence of malware activity. This will
make up our indicators of compromise.



We clearly see the original file - budget-report.exe completely renamed to a different file.
This is how it hides in your system. The AUTOSTART value will make sure the malware
file will automatically start when your system starts. Both of these files can be used to
identify where the malware is hiding.

Now we analyse the network packet obtained from FakeNet. Simply close FakeNet and use
the .pcap file for network analysis. This can be done with WireShark or BRIM.



The above clearly tells us something is going wrong, and is causing an alert in BRIM.
Unfortunately the exact malware behaviour seen in the video vs on my system is not
identical. This could possibly be due to the fact i was not connected to the internet. As i
have a local machine running on my local network - i am not going to infect my network and
take that kind of risk.

While we can cleary see in ProcDOT - malicious behaviour IS in fact happening, the pcap
file did not monitor suspicious activity going outwards. Again - could be due to the fact
internet connection was not established, but still.

AT THIS STAGE it is important to return to a PREVIOUS stage /
snapshot!!



Analysis of malware sample 2
The second file is a special one. It seems to be a regular .exe file - but in fact is something
different:

This is a UPX file - thus it is compressed. We need to uncompress this file firstly to analyse
it.

upx –d –o newname.exe originalname.exe

On Windows UPX is not by default available - download a UPX package manager and use
the command appropriately:

./upx.exe -d C:\Users\Freds\Documents\malware-sample\financials-xls.exe -o
C:\Users\Freds\Documents\malware-sample\malware.exe

Now we have an even more malicious file… which is actually an executable:

Now open up PE Studio. We can clearly see the malicious behaviour already… in Russian:



We can see this malware has, again, malicious libraries and imports. WriteFile is a clear
winner already - while also changing a lot of Registry keys. In the first image - Virustotal
already flags the file multiple times.

VirusTotal also flags the hash of the file as malicious. We can also use BinText.



This file actually creates a fake website telling you your computer is infected. It is directly
linked to a website: download . bravesentry . com

You can use xorsearch which apparently i don’t have to analyse the file for encrypted
strings. This can be used to encrypt strings within your malicious file.

The sections part tells you the .text value is writable, executable and self-modifying -
which is definitely not default behaviour.

For dynamic analysis we, once more, open FakeNet, RegShot and ProcMon.
After setting everything up again we will run the malware as administrator.

We were thinking it was a website… But it is actually a weird little popup. After a minute or
two we will create the 2nd shot and stop ProcMon analysis. Once this is done, we will
initialise the Compare function within RegShot.



In the comparison we can see one very specific detail: xpupdate.exe

This is the persistence mechanism of this malware. When someone reboots or relogs it
will run this file.

The below two files are clearly indicators of compromise:

C:\Users\Freds\AppData\Roaming\Install.dat
C:\Windows\xpupdate.exe

While the tutorial is displaying a lot more output - i am just getting the Registry Key changes.

We will start looking into ProcDOT for a visual representation of the malware.

The malware is creating multiple files… but again it has two ways of persistence: both the
xpupdate.exe file, and the malware.exe file is directly injected into the registry.



Xpupdate.exe will automatically trigger once the system is restarted or relogged. The
malware.exe creates a new REGISTRY key with its values.

Again, unfortunately, the network is not properly working.

Assembly language basics
For malware analysis of Native Exe.

Stack:
● LIFO (Last In First Out) Data Structure
● Stores local variables, and return addresses for functions
● Accessed through push, pop, call and ret
● RAM memory layout:

○ Starts at higher addresses and as more values are pushed, smaller
addresses are used

Heap:

● Globally stored memory
● All functions can access it
● Typically stored in the Data Section of a program
● RtlAllocateHeap can be used to create a Heap
● Malware use heap as storage area for anything it is going to use

Segment Registers are used to store data.



Accessing parts of a register:

dword = 4 bytes (32 bits), word = 2 bytes (16 bits), byte = 8 bits
AH: gives you higher bytes, AL: gives you lower bytes. AX gives the value of the d-word

(word).

Flags register
Register where each bit acts as a flag, containing a 1 or a 0.



Assembly language instructions
● Three main categories:

○ Data transfer (mov)
○ Control Flow (push, call, jmp …)
○ Arithmetic/Logic (xor, or, and, mul, add …)

Example of data transfer instructions:

Example of Control Flow Instructions (function calls)

Example of Control Flow Instructions (Jumps)



Example of Arithmetic Instructions:

Example of Logic Instructions:

Test and cmp instructions:

● EAX register is used to hold the return value of a function call
● The return value could be an integer, eg 0 or 1 or -1 (FFFFFFFF), or, even an

address eg, 0x3FA593D3



Analysis of malware sample 3
● File identification (Lokibot Trojan)
● Unpacking and decompiling using Exe2Aut
● Using Ghidra Disassembler/Decompiler
● Using xdbg debugger to defeat anti-debugging
● Using xdbg debugger set breakpoints on VirtualAlloc
● Using xdbg debugger to set hardware breakpoints on memory
● Using Process Hacker to dump memory

This is a special file… an AutoIT file, which is apparently widely being used by malware
developers. Within AutoIT there is a script that is being used by the interpreter.

In order to recompile this file (since it is now an exe) towards an AutoIT file again. It will bring
back the original format created in AutoIT.

Once we do this with a specialised tool (Aut2Exe) we get a variety of files back. We have a
AU3 file which is effectively the file executing shell code.



All of the code is rather gibberish - and this is meant to be like
this. The AutoIT program does this specifically to confuse anyone
stumbling upon this malware.

We will be using Ghidra to debug this code. First create a new
project by clicking on File and following the steps described. Link
towards the malware folder.

Ghidra will automatically create a new folder and files.

Now we include the sample.bin file into the malware
folder (drag it towards Ghidra).

Click on OK and now it will load. When you get a Windows Security Alert - allow it, this is
normal. Now Ghidra has imported the file successfully and you can use Ghidra as the code
browser by dragging the file towards the green dragon. Now the analysis
part will start - and this might take a little while.

If Ghidra asks you if you want to analyse it now - click on yes. Don’t click on
anything - just continue by clicking on analyse. This may take a few minutes.
This can be seen in the bottom right of the program: a loading bar.



Now the interesting things start. The Program Tree is similar to
previous programs such as CFF Explorer or pestudio, for example.

Symbol Tree is a specific section that provides you with more
details.

Imports are the names used by the malware / code / program.
Exports are names being exported by the program.

Functions are specifically used within the code.

Once the analysis phase is done - you can proceed with
analysing the center panel - in which you can find the code of
the program.

There are two important aspects: security cookie and a
JMP parameter. The JMP will take you to the Main
function.

Here you will find a function with three parameters:
This is the actual Windows Main function!

Look in google for MSDN windows main function args.

Here you will investigate this main function, as here is where everything starts.

Once clicking on one of the parameters within the main function - we get a
IsDebuggerPresent function. The program itself is testing if a debugger is present - if it is not
present it will run the malware. Otherwise it will just print a simple message and stop.

In oder to stop this behaviour from happening - since we want to run the malware - we
need to change this parameter. For this we will use the tool xdbg.



The further you dive into the code - the more you understand assembly language
instructions. Many parameters and functions are utilised in the code in order to write a
malicious program. You can also use the Function Call Graph function, in the Window tab
to see functions correlating with parameters, or the Function Graph function. Both of them
provide an excellent visual representation of functions and parameters.

If you have no idea about functions just look it up via MSDN Windows.

Xdbg debugger
Always pick the tool for the correct program - check if it is either x32 or x64 and reverse the
tool. This is effectively dynamic analysis. Click on run. We know from our previous
analysis there is a debugger present - thus we need to create a breakpoint.

ASLR: Address Space Layout Randomization. This is a security feature to randomise the
base address when the program is running.

Ghidra:

Xdbg:

We need to recalculate these values. Take the first part of the .text xdbg, and add the last
part of the Ghidra expression, et voila:



When we click on OK it will take us to the IsDebuggerPresent function:

Here we put a breakpoint by right clicking on the parameter, select breakpoint and
toggle. Now the program will stop at this breakpoint if you run it.

First click on Step Over and Modify the EAX value to 0 (from 1).

Now click on Step over and see if it works. If it continues - it works. JNE means Jump Not
Equal - so if this is not 0, it will not jump.

Now also set a breakpoint at bp VirtualAlloc - which you can enter in the Command
section. This can be reviewed in the breakpoints section.

Now run so you are going to hit the next breakpoint: VirtualAlloc. This function is used by
malware just before it unpacks itself. It needs to allocate virtual memory in order to
unpack itself. Now we are going to jump over it.

Jump towards the following parameter:



Now we need to look for the second parameter (esp+4 or EAX):

Right click it and click on Follow in dump. This will be the address
allocated for your virtual memory. Now jump again. EAX now is offering a
return value 0: which means success!

Now we can check in the memory map and see the next value is ERW and PRIV - which
means the memory has been allocated:

Now you can further analyse the file with tools such as Ghidra and Process Hacker to dump
the memory. For now - this is a bit too advanced to proceed.

Reverse engineering malware sample 4
● Analysis of Tesla Crypt Ransomware
● File identification
● Custom packer detection using PEStudio
● Using xdbg debugger to unpack
● Using Process Hacker to dump memory
● Analysing unpacked file using Ghidra

We open DIE: Detect It Easy and open the malware.



It did not detect any packers… that doesn’t mean they are not there. Click on Entropy. It
tells you it is 95% packed! Entropy tells you how the bits are distributed in the file. This is
not natural… It means it is encrypted / encoded. Normal files are not this random! Max.
entropy is 8.0, now it is almost at a maximum.



Open the file with pestudio and let it analyse. The file-type is an executable!

There are a couple of libraries, but the imports are very few!

Similar to the APIs. Again it indicates this is packed.

We look into the sections and see the entropy is again VERY HIGH:

So… we need to debug it and unpack it with xdbg. Since we saw it was a 32x executable -
we will use x32 xdbg. Again: choose options and adjust the settings to exclude System
Breakpoint and TLS Callbacks.



Now open the malware, and don’t forget to select all files. We start by putting a bp on
VirtualAlloc.

Click run until the breakpoint. And Jump to VirtualAlloc.

Now click on the EAX and select Follow in Dump and notice it is empty.

It is RW: Readable and Writable.



It will now hit VirtualAlloc a second time. Jump a few times - and we see this will provide a
second allocation of memory. Follow in Dump - again empty - the second location in memory
that has been allocated for unpacking. The other dump has now been overwritten!

Check in the Memory Map again - and we see it is now ERW: Executable, Readable and
Writable:

Run again - and it has overwritten information again:

This confirms it has unpacked the executable. Now we need to dump this memory - by
utilising Process Hacker.



Double click and look at its memory. !! MAKE SURE TO RUN PROCESS HACKER AS
ADMINISTRATOR !! This is the reason we could not proceed in the previous malware
analysis. It does not have sufficient permissions to look into the memory. Look for the
memory location (in my case 00B6000).

This is a RWX: This is the same! (double click on the memory address)

Now we can dump this by clicking on save. We have now successfully dumped this
executable.



Unpacking / analysing the dump file
Open up this file in pestudio. It seems like this is the wrong file… no libraries and imports!

We repeat the x32db steps again and note the correct addresses:
00B20000
00B70000

We will now dump a different location. It started dumping in the first address.

Once we have this file dumped - we look further into it via Hex Editor (010 editor) and
search for 4D5A.



In theory you now have to look for the correct 4D5A value, as
there are multiple ones. Normally you should open every single
one - but this time we know it is the second value.

We now select all the wrong bytes (the ones before MZ) and
delete them. We save this and open this in pestudio.

It may take some times until you have it right.

We now finally see we have libraries and imports! And the
correct compiler-stamp. We now have way more imports!

Ghidra analysis
Create a new project… just like last time.

Now open the file and look for two parameters: Check WindowsPE, uncheck PDB.

Analysing has started - this will take up a few minutes again.



Now look for the entry point, go to Exports and click entry.

We have our famous security_init_cookie and JMP - famous for Windows files. The FUN
signature could be for the WINMAIN. Open up this signature.

https://learn.microsoft.com/en-us/windows/win32/learnwin32/winmain--the-application-entry-
point

Now change / edit this signature:

At this point you can pretty much go “bonkers” and analyse even
further. This is, for now, the stopping point of this analysis.

https://learn.microsoft.com/en-us/windows/win32/learnwin32/winmain--the-application-entry-point
https://learn.microsoft.com/en-us/windows/win32/learnwin32/winmain--the-application-entry-point


Reverse engineering Malware sample 5 (Simda Trojan)
● Analysis of Simda
● File identification
● Custom packer detection using PEStudio
● Identifying abnormal function epilogue
● Using Ghidra and xdbg to analyze abnormal epilogues
● Unpacking and dumping embedded code
● Alternative to VirtualAlloc method

A normal function:

Sometimes there can be abnormal function epilogues:



The below is a fake return. Because the RET will NOT RETURN to the PUSH anymore.

The below is an unexpected jump: the JMP will come unexpectedly straight to the RET.
RET will jump to the Embedded Code instantly.

Shell code:

● Historically shellcodes are machine code that spawns a command shell (eg, cmd or
bash )

● Injected into vulnerable programs
● Used in the above way = exploits
● In Malware, shellcodes can do anything, eg, unpacking malicious instructions, or

inserting fake rets or unexpected jumps

How to write shellcodes:
https://www.sentinelone.com/blog/malicious-input-how-hackers-useshellcode/

An example of a complex malware can be seen in the screenshot below:
This is a two layer unpacking mechanism, opposed to only unpacking it in one layer.



Identification

This is clearly an EXE (but its extension is .bin?). Open up DIE and look into the entropy
again. Mediocre entropy - and no packer, again.



In pestudio we notice there is no known signature, it is executable:

A number of indicators are present again: abnormal sections, few libraries and imports.

So at this point we can only assume this is in fact a packaged malware. But how do we
unpack it?

Identify abnormal epilogue
We will use Ghidra for analysis.

Uncheck PDB and check WindowsPE!



When we look at the entry - this is absolutely strange. A push before a ret is abnormal.

Right click on one of the addresses and click on disassemble. Next up is selecting a few
values and clearing it’s bytes:

Now go to Window and select Bytes. This opens up a hex editor.

We now change the values to 90 - as this is a no operating value.



Now we want Ghidra to reassemble the bits of code. Click at the top of this code and select
repair flow. Once we look at the code again we notice yet again another abnormal jumps.
When we follow the ECX we see the data is undefined.





Unpacking shellcode
Open up x32db (since we know it is x32…).

We will have to put a breakpoint at the point where things go somewhat janky:

When stepping over we notice we make this abnormal RET… This is not normal behaviour -
but we now have found the packed shellcode which we need in Ghidra.

Now use the following command:

Savedata path_to-Output_file, base_addr, size

savedata C:\Users\Freds\Documents\malware-sample-5\shellcode.bin, 02360000, 00087000

To find the base_addr - simply right click on the selected push to find the address in the
memory map. The size is exactly the second parameter.

Now paste the command in the Command section in x32dbg.

Now import this file into Ghidra - and select the correct language.



Now click in the already open Ghidra CodeBrowser - File - Open - Analyse the new file.

Now we need the correct address - use the address from x32dbg: 023E6ED0 - we do
need its offset!

We can calculate this with the calculator, and we need to subtract the base address which
we already found in the previous steps:

023E6ED0 - 02360000 = 86ED0

Now go to Ghidra and select Navigation - and click Go To… and enter the address. This is
effectively the entry point.

Go to main -> click on return -> and we are now in the code again!

We need to put a breakpoint at the RET address. Return to x32dbg… A little bit of math
wizardry again: the address mentioned above + the base address!

023E + 6fc4: 023E6fc4

Now we run again and jump back. We notice it is sending us back to the original location.

We can use a Plugin Scylla to unpack this newly found code.



Click on IAT Autosearch. It is the table containing all the imports for all the functions. We
need this so the program can run normally! Click on Get Imports!

Now dump it and fix dump. It will create a new file -> SCY.



Again - add this file to Ghydra and it finally correctly identifies this file:

Do the same steps as always: file -> open -> analyse! We now see a lot of Imports!

Open up kernel32.dll and notice the function CreateToolHelp32Snapshot. This is a tool
used by malware to identify if malware analysis is performed. Double click and go to the
function.



Click on the third value on the right.

And here we effectively see this malware is trying to evade malware analysis. This is the
most advanced search we’ve done so far - and is also the end of the course. You can still
search and scavenge further.






